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Designing Cyber Insurance Policies: The Role
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Abstract—Cyber insurance is a viable method for cyber
risk transfer. However, it has been shown that depending
on the features of the underlying environment, it may
or may not improve the state of network security. In
this paper, we consider a single profit-maximizing insurer
(principal) with voluntarily participating insureds/clients
(agents). We are particularly interested in two distinct
features of cybersecurity and their impact on the contract
design problem. The first is the interdependent nature
of cybersecurity, whereby one entity’s state of security
depends not only on its own investment and effort, but
also the efforts of others’ in the same eco-system (i.e.
externalities). The second is the fact that recent advances
in Internet measurement combined with machine learning
techniques now allow us to perform accurate quantitative
assessments of security posture at a firm level. This can be
used as a tool to perform an initial security audit, or pre-
screening, of a prospective client to better enable premium
discrimination and the design of customized policies. We
show that security interdependency leads to a “profit
opportunity” for the insurer, created by the inefficient effort
levels exerted by interdependent agents who do not account
for the risk externalities when insurance is not available;
this is in addition to risk transfer that an insurer typically
profits from. Security pre-screening then allows the insurer
to take advantage of this additional profit opportunity
by designing the appropriate contracts which incentivize
agents to increase their effort levels, allowing the insurer
to “sell commitment” to interdependent agents, in addition
to insuring their risks. We identify conditions under which
this type of contracts lead to not only increased profit
for the principal, but also an improved state of network
security.

Index Terms—Cybersecurity, Cyber Insurance, Pre-
screening, Security Interdependence.

I. INTRODUCTION

The market for cyber-insurance products has been
growing steadily in recent years [3], [4], with over 70
carriers around the world and total premiums estimated
over $3B and projected to reach $10B by 2020. These
products enable organizations and businesses to manage
their cyber-risks by transferring (part of) their risks to
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an insurer in return for paying premiums. This growing
market has motivated an extensive literature (see e.g.
[5]–[15]), which aims to understand the unique char-
acteristics of these emerging contracts, their effect on
the insureds’ security expenditure, and the possibility of
leveraging these contracts to shape users’ behavior and
improve the state of cybersecurity; see Section II for
an overview of the related literature. The conclusions of
these studies depend on the assumptions on the insurance
market model (profit maker vs. welfare maximizing
insurers), the agents’ (insured’s) participation decisions
(compulsory vs. voluntary insurance), and the assumed
model of interdependency among the insured.

In this paper, we are interested in analyzing the
possibility of using cyber-insurance as an incentive for
improving network security. We adopt two model as-
sumptions which we believe better capture the current
state of cyber insurance markets but differ from the ma-
jority of the existing literature; we shall assume a profit-
maximizing cyber insurer, and voluntary participation,
i.e., agents may opt out of purchasing a contract. Under
this model, we focus on two features of cyber-insurance:
(i) availability of risk assessmentfor mitigating moral
hazard, and (ii) the interdependent nature of security.

The first feature is due to the fact that recent ad-
vances in Internet measurements combined with machine
learning techniques now allow us to perform accurate,
quantitative security posture assessments at a firm level
[16]. This can be used as a tool to perform an initial
security audit, or pre-screening, of a prospective client
to mitigate moral hazard by premium discrimination and
the design of customized policies. The second distinct
feature, the interdependent nature of security, refers to
the observation that the security standing of an entity
often depends not only on its own effort towards im-
plementing security metrics, but also on the efforts of
other entities interacting with it within the eco-system;
see e.g., [17]–[20]. Such interdependency is crucial for
the insurer’s contract design problem, as the insurer will
need to offer coverage to each insured for both its losses
due to direct breaches, as well as indirect losses caused
by breaches of other entities.

To distinguish the effect of each feature on the cyber-
insurance contract design problem, we begin by con-
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sidering a single-agent; this allows us to remove the
effects of risk interdependence and focus on the role of
pre-screening. We consider both risk-neutral and risk-
averse agents. We first show that when the agent is risk-
neutral, a market for cyber-insurance does not exist, this
is consistent with previous results, see e.g. [21], [22]. For
the risk-averse agent on the other hand, a cyber-insurance
market exists. We show that the agent’s effort inside
the contract increases as the quality of pre-screening
increases, that is, the insurer can use pre-screening to
mitigate moral hazard. Nevertheless, we show that even
with perfect pre-screening, the agent’s effort inside the
contract remains below his effort before the introduction
of insurance. In other words, for a single-agent, and even
in the absence of moral hazard, the introduction of cyber-
insurance deteriorates the state of network security.

We will next analyze the effect of risk interdependence
by considering the design of cyber-insurance contracts
for a network of two interdependent agents. We again
consider both risk-neutral and risk-averse agents. Here,
in contrast to the single agent case, we obtain a rather
surprising result: an insurance market exists even for
two risk-neutral agents. As there is no risk-transfer
between the agents and the insurer in this scenario,
we conclude that the emergence of a market is due to
the agents’ interdependence. We intuitively interpret this
finding as follows. The interdependency among agents
leads them to under-invest in security at the no-insurance
equilibrium; this is commonly referred to as free-riding,
see e.g., [20]. This inefficiency gap between the no-
insurance equilibrium and the agents’ utilities at more
efficient investment levels creates a “profit opportunity”
for the insurer. In particular, the insurer can use pre-
screening to offer a pair of contracts that incentivize the
agents to improve their levels of effort. In return for
improving his effort level as prescribed by the contract,
an insured is not only offered coverage in case of a
loss, but further the “commitment” of the other agent
to also improve its security, which will lead to further
reduction in the insured’s risks. Consequently, network
security under these contracts is higher than the no-
insurance equilibrium, which further benefits the insurer
by lowering the risks of the insureds in its portfolio.

We will then consider the combined effect of risk
transfer, interdependence, and security pre-screening, by
considering a network of two interdependent risk-averse
agents. Similar to the risk-neutral case, the interdepen-
dence leads to free-riding by agents in the absence of
insurance. Consequently, the insurer can extract profit
from both fronts: risk transfer, and taking advantage of
the efficiency gap by incentivizing agents to exert higher
effort. We identify a sufficient condition under which
insurance leads to the improvement of network security
compared to the no-insurance scenario. We illustrate

these results in both a two-heterogeneous-agents model
and an N -homogeneous-agents model. Lastly, we will
discuss the effects of correlation in agents’ losses, as well
as a risk-averse insurer, on the cyber-insurance contracts,
and illustrate our findings through numerical simulations.

Our main finding is that security interdependence
among agents seeking cyber-insurance leads to a profit
opportunity for the insurer. A cyber-insurer profits not
only from risk-transfer, but also from selling commitment
to interdependent agents: each agent will be required to
improve its levels of investment in security, in return
for the guarantee that other agents will do so as well.
Security pre-screening allows the insurer to take advan-
tage of this additional profit opportunity, by designing
the appropriate contracts which incentivize agents to
increase their effort levels. Together, these contracts can
lead to an improvement in the state of network security.

Our analysis is primarily based on a two-agent model.
While technically limited in scope, this simple model
offers substantial conceptual insights, some of which
are more generally applicable. We also use numerical
examples to highlight where conclusions are expected to
hold under more relaxed assumptions.

Preliminary versions of this work appeared in [1]
and [2]. In [1], we studied the role of pre-screening
in designing cyber insurance contracts between a risk-
neutral insurer and a risk-averse agent, as well as two
homogeneous interdependent risk-averse agents. In [2],
we examined the problem of designing cyber insurance
contracts using pre-screening between a risk-neutral in-
surer and agents in the following scenarios: (i) a single
risk-neutral agent, (ii) two heterogeneous interdependent
risk-neutral agents, (iii) two heterogeneous interdepen-
dent risk-averse agents, and (iv) N homogeneous in-
terdependent risk-averse agents. In addition to a better
exposition of our work by including numerical results
and technical analysis in the appendix, we extend our
previous work by considering a risk-averse insurer and
N interdependent agents whose losses are correlated. In
this scenario, we study the effect of correlated losses and
insurer’s risk-aversion on network security.

The remainder of the paper is organized as follows.
We review related work in Section II. We present the
single agent model in Section III, followed by the anal-
ysis in Section IV. We present the two-agent model and
analysis in Section V. We discuss an N -homogeneous-
agent case in Section VI, present numerical results in
Section VII, and conclude in Section VIII.

II. RELATED WORK

We provide an overview of existing literature that is
most closely related to this paper. These studies have
considered either competitive or monopolistic insurers,
as well as either mandatory or voluntary adoption by
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the insured. The works in [5]–[10] consider compet-
itive insurance markets under compulsory insurance,
and analyze the effect of insurance on agents’ secu-
rity expenditures. The authors of [5], [6] consider a
competitive market with homogeneous agents, and show
that insurance often deteriorates the state of network
security as compared to the no-insurance scenario. [7],
[8] study a network of heterogeneous agents and show
that the introduction of insurance cannot improve the
state of network security. Ogut et al. [9] study the
impact of the degree of agents’ interdependence, and
show that agents’ investments decreases as the degree
of interdependence increases. Yang et al. [10] study a
competitive market under the assumption of voluntary
participation by agents, with and without moral hazard.
In the absence of moral hazard, the insurer can observe
agents’ investments in security, and hence premium
discriminates based on the observed investments. They
show that such a market can provide incentives for agents
to increase their investments in self protection. However,
they show that under moral hazard, the market will not
provide an incentive for improving agents’ investments.

The impact of insurance on the state of network
security in the presence of a monopolistic welfare maxi-
mizing insurer has been studied in [11]–[13], [23], [24].
In these models, as the insurer’s goal is to maximize
social welfare, assuming compulsory insurance, agents
are incentivized through premium discrimination, i.e.,
agents with higher investments in security pay lower pre-
miums. As a result, these studies show that insurance can
lead to improvement of network security. An insurance
market with a monopolistic profit maximizing insurer,
under the assumption of voluntary participation, has been
studied in [14], which shows that in the presence of
moral hazard, insurance cannot improve network security
as compared to the no-insurance scenario.

Our assumptions on the model, namely a profit-
maximizing insurer and voluntary participation, are sim-
ilar to [14]. Our work differs from [14], as well as other
existing work, in that we illustrate (i) the role of pre-
screening in mitigating moral hazard, and (ii) the pos-
sibility of designing contracts that leverage sufficiently
accurate pre-screening and agents’ interdependence to
improve the state of network security.

III. MODEL AND PRELIMINARIES: SINGLE AGENT

We begin by considering the single-period contract
design problem between a single risk-neutral insurer
and a single agent1; we refer the interested reader to
[22] for an overview of contract theory. The analysis of
the single-agent case allows us to study solely the role

1Throughout the paper, we use she/her and he/his to refer to the
insurer and agent(s), respectively.

of pre-screening by excluding the interdependency, and
later, in conjunction with the analysis of Section V-B
and V-C, to uncover the role of interdependency.

An agent exerts effort e ∈ [0,+∞) towards securing
his system, incurring a cost of c per unit of effort. Let
Le denote the loss, a random variable, that the agent
experiences given his effort e. We assume Le has a
normal distribution2, with mean µ(e) ≥ 0 and variance
λ(e) ≥ 0.3 We assume both µ(e) and λ(e) are strictly
convex, strictly decreasing, and twice differentiable. The
decreasing assumption implies that increased effort re-
duces the expected loss, as well as its unpredictability.
The convexity assumption suggests that while initial
investment in security leads to considerable reduction in
loss, the marginal benefit decreases as effort increases.
In other words, it is not possible to reduce risk from
cyber attacks to zero even if the agent exerts very large
effort [25], [26]. We further preclude the possibility of
misclaims by assuming that the realized loss is observed
perfectly by both the insurer and the agent.

In general, the effort exerted by an agent is not
observable by the insurer; this information asymmetry
is formally referred to as moral hazard. We assume that
in order to reduce this asymmetry and attain better infor-
mation about the agent, the insurer can conduct a pre-
screening of the agent’s security standing. Through pre-
screening, the insurer obtains a pre-screening assessment
or outcome Se = e + W , where W is a zero mean
Gaussian noise with variance σ2. We assume both agent
and insurer know the distribution of Se; such assessment
can be obtained through a range of possible methods and
(Internet) measurement techniques, information from
initial surveys filled out by the agent, external audits,
or internal audits conducted by a third party firm. We
assume Se is conditionally independent of Le, given e.
The pre-screening outcome Se will be used by the insurer
in determining the terms of the contract.

A. Linear Contract and the Insurer’s Payoff

We consider the design of a set of linear contracts.
Specifically, the contract offered by the insurer consists
of a base premium p, a discount factor α, and a coverage
factor β. The agent pays a premium p − α · Se, and
receives β ·Le as coverage in the event of a loss. We let
0 ≤ β ≤ 1, i.e., coverage never exceeds the actual loss.
Thus the insurer’s utility (profit) is given by:

V (p, α, β, e) = p− α · Se − β · Le . (1)

2The normal assumption on Le is to some extent justified by the
fact that Le is meant to capture the sum total of losses from a variety
of sources, such as hacking, malware, insider threats, etc.

3For ease of exposition, we assume that λ(e) is sufficiently small
compared to µ(e), so that Pr(Le < 0) is negligible.
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The insurer’s expected profit is then given by
V (p, α, β, e) = p− αe− βµ(e).

B. Risk-Neutral Agent

The utility of a risk-neutral agent is given by,

U(e) = −Le − ce⇒ U(e) = E(U(e)) = −µ(e)− ce
(2)

If the agent chooses not to enter a contract, he bears
the full cost of his effort as well as any realized loss.
Therefore, the optimal effort (m) of the agent outside
the contract is m = argmine≥0 µ(e) + ce and his
expected utility outside the contract is uo := U(m).

On the other hand, if the agent purchases a contract
(p, α, β) from the insurer, then his utility, and expected
utility, are given by:

U in(p, α, β, e) = −p+ αSe − Le + βLe − ce

U
in
(p, α, β, e) = E(U in(p, α, β, e))

= −p+ (α− c)e+ (β − 1)µ(e) (3)

C. Risk-Averse Agent

For simplicity we shall use the same notation for risk-
averse agents as for risk-neutral agents. The utility of a
risk-averse agent is given by:

U(e) = − exp{−γ · (−Le − ce)} , (4)

where γ denotes the risk attitude of the agent; a higher γ
implies more risk aversion. We assume γ is known to the
insurer , thereby eliminating adverse selection and solely
focusing on the moral hazard aspect of the problem.

Using basic properties of the normal distribution, we
have the following expected utility for the agent:

U(e) = E(− exp{−γ · (−Le − ce)})

= − exp{γ · µ(e) + 1

2
γ2λ(e) + γce} . (5)

Using (5), the optimal effort for an agent
outside the contract is given by m :=
argmine≥0

{
µ(e) + 1

2γλ(e) + ce
}

. Again, let
uo = U(m) denote the maximum expected payoff
of the agent without a contract.

If a risk-averse agent accepts a contract (p, α, β), his
utility is given by:

U in(p, α, β, e) =

− exp{−γ · (−p+ α · Se − Le + β · Le − ce)} . (6)

Noting that Se and Le are conditionally independent, his
expected utility is

U
in
(p, α, β, e) = − exp{γ(p+ (c− α)e+ 1

2
α2γσ2+

(1− β)µ(e) + 1

2
γ(1− β)2λ(e))} . (7)

D. The Insurer’s Problem

The insurer designs the contract (p, α, β) to maximize
her expected payoff. In doing so, the insurer also has to
satisfy two constraints: Individual Rationality (IR), and
Incentive Compatibility (IC). The first stipulates that a
rational agent will not enter a contract with expected
payoff less than his outside option uo, and the second
that the effort desired by the insurer should maximize the
agent’s expected utility under that contract. Formally,

max
p,α≥0,0≤β≤1,e≥0

V (p, α, β, e) = p− α · e− β · µ(e)

s.t. (IR) U
in
(p, α, β, e) ≥ uo (8)

(IC) e ∈ argmaxe′≥0 U
in
(p, α, β, e′)

The above optimization problem can be simplified,
for risk-neutral and risk-averse agents, respectively. As
the base premium is a constant in the contract, the (IC)
constraint for a risk-neutral agent can be rearranged as:

e ∈ argmin
e′≥0

(c− α)e′ + (1− β)µ(e′) . (9)

Similarly, the (IC) constraint for a risk-averse agent can
be rewritten as:

e ∈ argmin
e′≥0

(c− α)e′ + (1− β)µ(e′) + γ

2
(1− β)2λ(e′)

(10)

Next, we can simplify the (IR) constraint using the
following lemma; proofs can be found in the online
appendix [27].

Lemma 3.1: The (IR) constraint is binding in the
optimal contract.

By lemma 3.1, the (IR) constraint of a risk-neutral
agent can be written as −p−(c−α)·e−(1−β)µ(e) = uo

and, for a risk-averse agent,

p+(c−α)e+γ
2
α2σ2+(1−β)µ(e)+γ

2
(1−β)2λ(e) = wo,

(11)
where wo := ln(−uo)

γ = mine≥0{µ(e)+ 1
2γλ(e)+ c · e}.

Using the above expressions to substitute for the base
premium p in the objective function in (8), and using
the simplified expressions for the (IC) constraints, we
re-write the insurer’s contract design problem as follows.

Insurer’s problem with a risk-neutral agent:

maxα≥0,0≤β≤1,e≥0 −uo − µ(e)− c · e
s.t., e = argmine′≥0 (c− α)e′ + (1− β)µ(e′) (12)

Insurer’s problem with a risk-averse agent:

maxα≥0,0≤β≤1,e≥0
wo − µ(e)− γ

2 (1− β)
2λ(e)− ce− γ

2α
2σ2

s.t., e = argmine′≥0
(c− α)e′ + (1− β)µ(e′) + γ

2 (1− β)
2λ(e′)

(13)
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IV. ROLE OF PRE-SCREENING FOR A SINGLE AGENT

We now solve the optimal contract problem posed in
(12) and (13), respectively.

A. Risk-Neutral Agent (Problem (12))

In this case, the objective function of the insurer is
given by −uo − µ(e) − c · e. However, note that uo =
maxe≥0{−µ(e)−ce}, and therefore the insurer’s profit is
at most zero. A contract with (p = 0, α = 0, β = 0) will
yield a payoff of zero, making it an optimal contract.
We thus conclude that it is optimal for the insurer to
not offer a contract to a risk-neutral agent. Also note
that in this case the quality of pre-screening, or indeed
the availability of pre-screening regardless of the quality,
plays no role in either the insurer’s or agent’s decisions.

B. Risk-Averse Agent (Problem (13))

We start with the following theorem on the state of
network security, defined as the effort exerted by the
agent, before and after the purchase of a contract.

Theorem 4.1: Assume that (α̂, β̂, ê) solves optimiza-
tion problem (13). Then ê ≤ m, where m is the level
of effort outside the contract; in other words, insurance
decreases network security.
Proof. Assume that (α̂, β̂, ê) solves optimization problem
(13), and that, by contradiction, ê > m ≥ 0.

First, recall that the agent’s optimal
effort m outside the contract is given by
m := argmine≥0

{
µ(e) + 1

2γλ(e) + ce
}
. For m to be

the minimizer, we should have c+µ′(m)+ 1
2γλ

′(m) ≥ 0.
Next, consider the following two cases:

(i) α̂ = 0. Starting from the first order condition
(FOC) on the (IC) constraint, we have,

(1− β̂)µ′(ê) + 1
2γ(1− β̂)

2λ′(ê) + c = 0
⇒ µ′(ê) + 1

2γλ
′(ê) + c < 0

⇒ µ′(m) + 1
2γλ

′(m) + c < 0

(14)

Here, the second line follows from the decreasing
nature of µ(·) and λ(·), and the third line follows from
their convexity. The last inequality is impossible given
the optimality of the effort m outside the contract. This
contradiction shows that we cannot have ê > m.

(ii) α̂ > 0. Given the assumption that ê > m, and µ(·)
and λ(·) are strictly convex, we have,

0 ≤ c+ µ′(m) + 1
2γλ

′(m)

≤ c+ µ′(m) + 1
2γ(1− β̂)

2λ′(m)

< c+ µ′(ê) + 1
2γ(1− β̂)

2λ′(ê)

(15)

Therefore, if the insurer decreases α̂, the agent de-
creases his effort (this can be seen from the IC con-
straint), and consequently the insurer’s utility increases,
as the objective function of the insurer, wo − µ(e) −
1
2 (1− β̂)

2λ(e)− ce− 1
2γα

2σ2, is decreasing in e and α

at e = ê, α = α̂. Therefore, (α̂, β̂, ê) is not the optimal
contract. Again by contradiction, we conclude that the
agent’s effort in the optimal contract should be less than
or equal to m. �

Theorem 4.1 illustrates the inefficiency of cyber insur-
ance as a tool for improving the state of security. Existing
work in [6], [24] have also arrived at a similar conclusion
when studying competitive/unregulated cyber insurance
markets. Note also that Theorem 4.1 holds regardless of
the pre-screening quality. We next examine the role of
pre-screening in this model. We first analyze its impact
on the insurer’s profit.

Theorem 4.2: Let v(α, β, e, σ2) denote the payoff
of the principal, at a contract (α, β) when the agent
exerts effort e, and the noise of pre-screening is σ2. Let
z(σ2) := {maxα≥0,0≤β≤1,e≥0 v(α, β, e, σ2), s.t. (IC)}
be the principal’s payoff under the optimal contract as
a function of the pre-screening noise. We then have
z(σ2

1) ≤ z(σ2
2), ∀σ2

1 ≥ σ2
2 . That is, z(σ2) is a decreasing

function of the pre-screening noise.
Proof. Let v(α, β, e, σ2) be the payoff of the principal,

at a contract (α, β), when the agent exerts effort e and
the noise of pre-screening is σ2, and let z(σ2) be the
insurer’s profit at the optimal contract as a function of
the pre-screening noise. We have,

z(σ2
1 + σ2

2) =maxα,0≤β≤1,e≥0,IC v(α, β, e, σ
2
1 + σ2

2)

≤ maxα,0≤β≤1,e≥0,IC v(α, β, e, σ
2
1) +

maxα,0≤β≤1,e≥0,IC{− 1
2α

2γσ2
2} ≤

maxα,0≤β≤1,e≥0,IC v(α, β, e, , σ
2
1) = z(σ2

1) (16)

Therefore, z(σ2
1 + σ2

2) ≤ z(σ2
1), ∀σ2

2 . That is, z(σ2) is
a decreasing function of the pre-screening noise. �

The above result is intuitively to be expected, as a
strategic insurer can leverage improved pre-screening to
better mitigate moral hazard and attain a higher payoff.
The more interesting observation is on the effect of pre-
screening on the state of network security. The following
theorem presents a sufficient condition under which
the availability of a pre-screening assessment improves
network security, compared to the no pre-screening sce-
nario. Note that we use σ = ∞ for evaluating the no
pre-screening scenario. The equivalence follows from the
fact that, as shown in the online appendix [27], by setting
σ = ∞, the insurer’s optimal choice will be α = 0,
which removes the effects of pre-screening.

Theorem 4.3: Let e1, e2, e∞ denote the optimal
effort of the agent in the optimal contract when
σ = σ1, σ = σ2 and σ = ∞, respec-

tively. Let k(e, α) =
µ′(e)+

√
µ′(e)2−2γ(c−α)λ′(e)
−γλ′(e) . If

k(e, α1)
2λ(e)−k(e, α2)

2λ(e) is non-decreasing in e for
all 0 ≤ α1 ≤ α2 ≤ c, then e1 ≥ e2 if σ1 ≤ σ2.
In other words, better pre-screening improves network
security. In addition, if k(e, 0)2λ(e) − k(e, α)2λ(e) is
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non-decreasing in e for all 0 ≤ α ≤ c, then e1 ≥ e∞.
That is, the availability of a pre-screening improves
network security over the no pre-screening scenario.

Sketch of Proof. The proof proceeds in the following
steps:
• We first show that 0 ≤ αi ≤ c using the KKT

conditions for the (IC) constraint of (13), given by

(1− βi)µ′(ei) + 1
2γ(1− βi)

2λ′(ei)
+c− αi − vi = 0

vi · ei = 0, ei ≥ 0
(17)

• We next show that α1 ≥ α2; this follows from the
inequalities determining the optimality of the contracts at
their respective pre-screening noises. In other words, as
pre-screening noise decreases, the insurer offers higher
discount factor.
• We then proceed by contradiction, assuming 0 ≤

e1 < e2. As e2 > 0, by (17) we have,

(1− β2)µ′(e2) + γ(1−β2)
2λ′(e2)

2 + c− α2 = 0

1− β2 =
µ′(e2)+

√
µ′(e2)2−2γ(c−α2)λ′(e2)

−γλ′(e2) :=

k(e2, α2)

(18)

In addition, as e1 < e2 and α1 ≥ α2, we can show
that α1 > 0 and e1 > 0. With e1 > 0, by (17) we have,

(1− β1)µ′(e1) + γ(1−β1)
2λ′(e1)

2 + c− α1 = 0

1− β1 =
µ′(e1)+

√
µ′(e1)2−2γ(c−α1)λ′(e1)

−γλ′(e1) :=

k(e1, α1)

(19)

• Lastly, we show that if (k(e, α2)
2 − k(e, α1)

2)λ(e)
is non-decreasing, then α1 and e1 are not the maximizer
of the insurer’s profit when σ2 = σ2

1 . This is a contra-
diction. Therefore, we conclude that e1 ≥ e2. �

Several instances of µ(e) and λ(e), e.g., (µ(e) =
1
e , λ(e) = 1

e2 ), and (µ(e) = exp{−e}, λ(e) =
exp{−2e}), satisfy the condition of Theorem 4.3.

C. Comparison

By comparing the contracts in the risk-neutral and
risk-averse agent cases, we observe that a market exists
and the insurer makes profit only when offering a con-
tract to a risk-averse agent. This is indeed to be expected,
as insurance is primarily a method for risk transfer;
risk-averse agents are willing to pay premiums that are
higher than their expected loss, in order to reduce the
uncertainty in their loss, consequently allowing the risk-
neutral insurer to make a profit. We further observe that
when the market exists, the introduction of pre-screening
benefits the insurer (Theorem 4.2) as well the state of
network security (Theorem 4.3).

V. MODEL AND ANALYSIS FOR TWO AGENTS

We next study the contract design problem between
the insurer and two agents. In particular, we analyze
the impact of interdependency and pre-screening on the
optimal contract and agents’ effort, in the case of two
risk neutral and two risk averse agents, respectively, with
the former allowing us to exclude the effect of risk
aversion and focus on the effect of interdependence.

A. A model of two agents

The two agents are interdependent, in that the effort
exerted by one agent affects not only himself, but also
the loss that the other agent experiences. We model the
interdependence between these two agents as follows:

L
(i)
e1,e2 ∼ N (µ(ei + x · e−i), λ(ei + x · e−i)) . (20)

Here, {−i} = {1, 2} − {i}, and L
(i)
e1,e2 is a random

variable denoting the loss that agent i experiences,
given both agents’ efforts. The interdependence factor
is denoted by x ∈ [0, 1). Note that this is not a
unique modeling choice and is indeed a simplification; a
more general way of expressing correlated risks would
be to model the losses as jointly distributed; more on
extensions is discussed in Section VIII.

We assume the agents’ utilities are again given by (2)
and (4) for risk-neutral and risk-averse agents, respec-
tively, with the loss distributions replaced by the above
expression. We allow the two agents to have different
effort cost c1, c2, as well as different risk attitudes γ1, γ2.

The insurer can again conduct a pre-screening as-
sessment, Sei = ei + Wi, on each agent i, where
Wi is a zero mean Gaussian noise with variance σ2

i .
We assume that W1 and W2 are independent 4, and
that Se1 , Se2 , L

(1)
e1,e2 , L

(2)
e1,e2 are conditionally indepen-

dent given e1, e2.
Similar to the single agent case, we need to evaluate

the agents’ outside options from purchasing a contract.
These will then be used to impose the individual rational-
ity constraints in determining the terms of the contracts.
However, compared to the single agent case, the outside
option of one agent is now influenced by the participation
choice of the other agent as well. Specifically, we need to
evaluate the agents’ utilities as well as potential contracts
in the following three scenarios:
(i) neither agent enters a contract;

(ii) one enters a contract, while the other opts out; and
(iii) both purchase contracts.

Here, Case (ii) is the outside option for agents in Case
(iii), and Case (i) is the outside option for agents in

4An example and discussion on correlated pre-screening noises can
be found in the online appendix [27].
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Case (ii). Therefore, in order to evaluate the participa-
tion constraints of agents when both purchase insurance
contracts (Case (iii)), we first need to find the optimal
contracts and agents’ payoffs in Cases (i) and (ii). We
therefore evaluate the agents’ utilities for each case, and
subsequently solve the insurer’s contract design problem,
in Sections V-B and V-C for risk-neutral and risk-averse
agents, respectively.

B. Two Risk-Neutral Agents
Our first two-agent model is for risk-neutral agents

to solely focus on the effect of interdependence. As
mentioned above, in order to evaluate the agents’ opt-
out options and finding the optimal contract, the insurer’s
problem and the agents’ utilities need to be studied under
three different cases. We begin by analyzing these three
cases, and then proceed to discussing the role of pre-
screening and the contracts’ effect on network security.

1) Case (i): Neither agent enters a contract: Let Goo

denote the game between two risk-neutral agents which
have purchased cyber insurance contracts. In this game,
Agents’ efforts e1, e2 are their actions, and the expected
payoffs of risk-neutral agents, with unit cost of effort
c1, c2 > 0, are given by:

U i(e1, e2) = −µ(ei + xe−i)− ciei . (21)

The best response of each agent is therefore given by

Bouti (e−i) = argmax
ei≥0

−µ(ei + xe−i)− ciei . (22)

The above optimization problem is convex, and has the
following solution:

mi = argmine≥0 µ(e) + cie, i = 1, 2 ,
Bouti (e−i) = (mi − xe−i)+ ,

(23)

where (a)+ = max{a, 0}. The Nash equilibrium is
given by the fixed point of the best-response mappings
Bout1 (e2) and Bout2 (e1):

e1 = (m1 − xe2)+, and e2 = (m2 − xe1)+ (24)

To find a fixed point, we consider three cases,
• e1 = 0, e2 ≥ 0: In this case, e2 = m2. Also, this

case is valid if m1 − xm2 ≤ 0 otherwise e1 should be
nonzero.
• e2 = 0, e1 ≥ 0: similar to previous case, e1 = m1.

This case is valid if m2−xm1 ≤ 0 otherwise e2 should
be nonzero.
• e1 > 0, e2 > 0: In this case, we solve the following

system of equations:

e1 = m1 − xe2, and e2 = m2 − xe1 (25)

The solutions of above equations is given by,

e1 = m1−x·m2

1−x2

e2 = m2−x·m1

1−x2

(26)

Notice that this case is valid if m1−x·m2

1−x2 > 0 and
m2−x·m1

1−x2 > 0. Therefore, given 0 ≤ x < 1, system
of equations (24) has a unique fixed point, and agent i’s
effort, e∗i (mi,m−i), at the unique Nash equilibrium:

e∗i (mi,m−i) =


mi−x·m−i

1−x2 if mi ≥ x ·m−i and
m−i ≥ x ·mi

0 if mi ≤ x ·m−i
mi if m−i ≤ x ·mi

(27)
Therefore, uooi = U i(e

∗
1(m1,m2), e

∗
2(m2,m1)) is the

utility of agent i in the equilibrium when agents do not
choose to enter the contract. As we will see shortly, an
insurer uses her knowledge of uooi to evaluate agents’
outside options when proposing optimal contracts.

2) Case (ii): One and only one enters a contract:
Assume without loss of generality that agent 1 enters a
contract, while agent 2 opts out. We use Gio to denote
the game between the insured agent 1 and uninsured
agent 2. The agents’ expected payoff in this case is:

U
in

1 (e1, e2, p1, α1, β1) =
−p1 − (c1 − α1)e1 − (1− β1)µ(e1 + xe2)
U2(e1, e2) = −µ(e2 + xe1)− c2e2

(28)

Let Bin1 (e2) denote the best response of agent 1. The
following optimization problem finds its best response:

Bin1 (e2) = argmaxe1≥0 U
in

1 (e1, e2, p1, α1, β1) =
argmaxe1≥0

−p1 − (c1 − α1)e1 − (1− β1)µ(e1 + xe2) .
(29)

The above optimization problem is convex, and has a
solution given by,

m1(α1, β1) = argmine≥0{(c1 − α1)e+ (1− β1)µ(e)}
Bin1 (e2) = (m1(α1, β1)− xe2)+

(30)
For the uninsured agent 2, it is easy to see that the
best-response function is given by Bout2 (e1), the same
best response function in game Goo. We can now find
the Nash equilibrium as the fixed point of the best-
response mappings. Agents’ efforts at the equilibrium are
e∗1(m1(α1, β1),m2) and e∗2(m2,m1(α1, β1)), as defined
in (27). For notational convenience, we denote these
efforts by e∗1, e

∗
2.

Let V
io
(p1, α1, β1, e1, e2) denote the insurer’s utility,

when agent 2 opts out and the insurer offers contract
(p1, α1, β1) to agent 1, and agents exert efforts e1, e2.
The optimal contract offered by the insurer to the par-
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ticipating agent is the solution to,

maxp1,α1,0≤β1≤1,e1e∗2 V
io
(p1, α1, β1, e

∗
1, e
∗
2) =

p1 − α1e
∗
1 − β1 · µ(e∗1 + x · e∗2)

s.t., (IR) U
in

1 (e∗1, e
∗
2, p1, α1, β1) ≥ uoo1 ,

(IC) e∗1, e
∗
2 are the agents’ efforts in NE of Gio

(31)

Similar to Lemma 3.1, we can show that the (IR) con-
straint is binding under the optimal contract. Therefore,
we can re-write the insurer’s problem by replacing the
base premium p1, leading to,

maxα1,0≤β1≤1,e∗1 ,e∗2 −u
oo
1 − µ(e∗1 + xe∗2)− c1e∗1

s.t., (IC) e∗1, e
∗
2 are the agents’ efforts in NE of Gio

(32)

Let uio2 be the second agent’s utility when the insurer
offers the optimal contract to the first agent and the
second agent opts out. The insurer can calculate uio2
by finding the optimal contract in problem (32) and the
resulting Nash equilibrium of game Gio. Similarly, uoi1
denotes the first agent’s utility when he opts out and the
second agent purchases the optimal contract. The insurer
uses her knowledge of uio2 and uoi1 in designing a pair
of contracts to attract both agents.

3) Case (iii): Both agents purchase contracts: Let Gii

denote the game between the two agents when they are
both in a contract. Assume the insurer offers each agent i
a contract (pi, αi, βi). The expected utility of the agents
when both purchase contracts is given by

U
in

i (e1, e2, pi, αi, βi) =

−pi − (ci − αi)ei − (1− βi)µ(ei + x · e−i). (33)

Following steps similar to those in Section V-B2, Bini ,
the best-response function of agent i, is given by

Bini (e−i) = (mi(αi, βi)− xe−i)+ , (34)

where mi(αi, βi) is the solution to,

mi(αi, βi) = argmine≥0{(ci − αi)e+ (1− βi)µ(e)} .
(35)

The agents’ efforts at the Nash equilibrium are again
the fixed point of the best-response mappings, and will
be given by e∗i (mi(αi, βi),m−i(α−i, β−i)), with e∗i (., .)
defined in (27). For notational convenience, we will
denote these as e∗i .

To write the insurer’s problem, note that the outside
option of agent 1 (resp. 2) from this game is his utility
in the game Goi (resp. Gio). Then, the optimal contracts
offered by the insurer to the agents is the solution to the

following optimization problem:

maxp1,α1,0≤β1≤1,p2,α2,0≤β2≤1,e∗1 ,e∗2
p1 − α1e

∗
1 − β1 · µ(e∗1 + x · e∗2)+

p2 − α2e
∗
2 − β2 · µ(e∗2 + x · e∗1)

s.t., (IR) U
in

j (e∗1, e
∗
2, pj , αj , βj) ≥ uoij , j = 1, 2

(IC) e∗1, e
∗
2 are the agents’ efforts in NE of Gii

(36)
The (IR) constraints can again be shown to be binding.

Therefore, the insurer’s contract design problem for two
risk-neutral agents is given by,

vii := maxα1,0≤β1≤1,α2,0≤β2≤1,e∗1 ,e∗2 −u
oi
1 − uio2

−µ(e∗1 + x · e∗2)− c1 · e∗1 − µ(e∗2 + x · e∗1)− c2 · e∗2
s.t., e∗1, e

∗
2 are the agents’ efforts in NE of Gii

(37)
4) Optimal Contracts for Two Risk-Neutral Agents:

We now analyze the properties of the contracts designed
based on the optimization problem (37), and their impact
on agents’ efforts.

Theorem 5.1: Let eoi denote the effort of agent i when
insurance is not available, and eini denote the effort of
agent i in the solution to (37), i.e., when purchasing
the optimal contract. Also, let ẽi denote the effort level
of agent i in the socially optimal outcome (i.e, the
efforts maximizing the sum of agents’ utilities). Then,
the insurer offers contracts to both agents, with the
following properties,

(i) eini = ẽi, for i = 1, 2. That is, the agents exert
socially optimal effort levels in the optimal contract.

(ii) ein1 + ein2 ≥ eo1 + eo2. That is, when both agents
purchase optimal insurance contracts, the overall effort
exerted toward security increases compared to the no-
insurance scenario.

(iii) vii ≥ U1(ẽ1, ẽ2) + U2(ẽ1, ẽ2) − U1(e
o
1, e

o
2) −

U2(e
o
1, e

o
2). That is, the principal’s profit is higher than

the gap between agents’ welfare at the socially optimal
solution and the no-insurance equilibrium.

Theorem 5.1, implies the following. Firstly, recall that,
as discussed in Section IV-C, the insurer cannot make
profit from offering contracts to a single risk-neutral
agent, as there is no risk transfer from risk-neutral agents
to an insurer. However, we observe that the insurer can
make profit when offering contracts to interdependent
risk-neutral agents. We conclude that this improvement
is due to the agents’ interdependency, and can be inter-
preted as follows. Due to interdependency, agents under
invest in security at the no-insurance equilibrium. This
leads to a profit opportunity for the insurer, in which she
uses her (accurate) pre-screening assessments to offer
premium discounts and (full) coverage of losses, and in
turn requires the agents to exert higher efforts (in this
particular case, the socially optimal levels of effort). This
increase in efforts is in the insurer’s interest, as it lowers
the risks of both of its contracts. In addition, this effect
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can be viewed as the insurer “selling commitment” to
agents. That is, the insurer is also providing each agent
with the commitment of the other agent to exert higher
effort, if he also commits to exerting high effort.

Secondly, Part (iii) of the theorem shows that the
profit opportunity for the insurer is even higher than
the welfare gap between the socially optimal and Nash
equilibrium outcomes. This is due to the fact that the
outside option from the contract for agent i is an outcome
in which the insurer offers a contract (only) to agent
−i. The insurer will select this contract in a way that
it requires agent −i to exert low effort and get high
coverage, effectively forcing agent i to bear the full
cost of effort, leading to a utility lower than the no-
insurance Nash equilibrium for agent i. Consequently, as
agents’ (IR) constraints are also binding, it follows that
the insurer’s profit is in fact the gap between welfare
attained under the optimal contract, and the welfare at
these low payoff, unilateral opt out outcomes.

Finally, note that the statements of this theorem do not
depend on the pre-screening noises σi <∞. This is be-
cause the expected utilities and consequent effort choices
of risk-neutral agents are only sensitive to the mean,
but not the variances of uncertainties in the problem
parameters. As such, under the assumption of zero mean
noise in the pre-screening assessments, agents’ behavior
will be independent of σ.

C. Two Risk-Averse Agents

We next analyze the case of two risk-averse agents.
Again, as discussed in Section V, in order to evaluate the
agents’ individual rationality constraints and finding the
optimal contracts, we need to account for three possible
cases based on the agents’ participation alternatives.

The ensuing analysis is similar to that presented in
Section V-B, by replacing the agent’s utility functions
with their risk-averse versions and solving the resulting
optimization problems. We thus present the details in
the online appendix [27]. Following the analysis, the
simplified insurer’s optimization problem is given by

vii = maxα1,0≤β1≤1,α2,0≤β2≤1,e∗1≥0,e∗2≥0 w
oi
1 + wio2

−µ(e∗1 + x · e∗2)− 1
2γ1(1− β1)

2λ(e∗1 + x · e∗2)
−c1 · e∗1 − 1

2α
2
1γ1σ

2
1

−µ(e∗2 + x · e∗1)− 1
2γ2(1− β2)

2λ(e∗2 + x · e∗1)
−c2 · e∗2 − 1

2α
2
2γ2σ

2
2

s.t., e∗1, e
∗
2 are the agents’ efforts in NE of game Gii

(38)
where woi1 =

ln(−uoi
1 )

γ1
and wio2 =

ln(−uio
2 )

γ2
.

We now discuss how different problem parameters,
particularly the availability of pre-screening, affect the
insurer’s profit in the optimal contracts, as well as the
system’s state of security. We first consider the utility of
the insurer. Note that the insurer always has the option

to not use the outcome of pre-screening by setting α =
0 in the contract. Therefore, the insurer’s utility in the
optimal contract with pre-screening is larger than that
in the optimal contract without pre-screening; i.e., the
availability of pre-screening is in the insurer’s interest.

We now turn to the effect of pre-screening on the state
of network security, which we shall measure by the total
effort toward security, e1 + e2.

Theorem 5.2:
Let mi = argmine≥0 µ(e)+

1
2γiλ(e)+cie. Let ei and

eoi denote the effort of agent i in the optimal contract and
in the no-insurance equilibrium, respectively.

(i) Assume perfect pre-screening, i.e., σ1 = σ2 = 0.
Then, e1 + e2 ≥ eo1 + eo2, if,

1. µ′(mi) <
−ci+xc−i

1−x2 , i = 1, 2

2. (µ′)−1(−ci+xc−i

1−x2 ) ≥ x(µ′)−1(−c−i+xci
1−x2 ), i = 1, 2

(39)
That is, under these conditions, insurance improves net-
work security compared to the no-insurance scenario.

(ii) Assume both pre-screening assessments are un-
informative. i.e., σ1 = σ2 = ∞. Then e1 + e2 ≤
eo1 + eo2. That is, the insurance contract without pre-
screening worsens network security as compared to the
no-insurance scenario.

The results of Theorem 5.2 can be intuitively inter-
preted as follows. By Theorem 4.1, with a single risk-
averse agent, the insurer profits from the agent’s interest
in risk transfer. However, the introduction of insurance
always reduces network security. In contrast, Theorem
5.2 shows that with interdependent agents network se-
curity can improve, while the insurer continues to make
profit. Therefore, it is agents’ interdependency that plays
a role in the improvement of security. To see why, note
that the insurer uses pre-screening and offers premium
discounts accordingly in order to incentivize the interde-
pendent agents to increase their effort levels. Providing
such incentives is in the insurer’s interest, as higher effort
exerted by the agent decreases both agents’ risk, and
consequently, the coverage required by the insurer once
losses are realized. Note also that it is the availability of
(accurate) pre-screening that provides the required tools
for the insurer in designing such incentives; otherwise,
as shown in part (ii) of the theorem, improving network
security is no longer possible.

The conditions of part of (i) of the theorem can also
be interpreted as follows. The first condition imposes a
restriction on the derivative of µ, so that the decrease in
loss as a function of effort is faster than the normalized
cost of effort; as a result, the insurer will have the
option to make more profit through loss reduction (by
encouraging agents to exert higher effort). The second
condition imposes a restriction on the agents’ cost of
effort and guarantees that both agents exert positive effort
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(see proof of Theorem 5.2). Specifically, when the two
agents’ effort costs are sufficiently similar, this condition
is satisfied, and both agents exert non-zero effort.

VI. N HOMOGENEOUS AGENTS, CORRELATED
LOSSES, AND RISK-AVERSE INSURER

In this section we show a number of extensions of
our results. First, in SectionVI-A we study the optimal
contracts in a network of N homogeneous risk-averse
agents. In Section VI-B, we examine the case where
the losses of these agents are not only distributionally
dependent but also correlated in their realizations; we
will also consider the impact of risk aversion on the part
of the insurer on the resulting contract.

A. N -homogeneous risk-averse agents
Consider a network of N homogeneous risk-averse

agents given by γi = γ, ci = c, and σi = σ, ∀i.
The assumption of homogeneity simplifies the insurer’s
problem, allowing us to obtain additional insights about
the contracts and their impact on network security. Let
eee = (e1, e2, · · · , eN ) denote the vector of efforts of all
agents. The loss of agent i is given by,

L(i)
eee ∼ N (µ(ei + x

∑
j 6=i

ej), λ(ei + x
∑
j 6=i

ej)) . (40)

The agents’ expected utility outside the contract is,

U i(eee) = E(− exp{−γ(−L(i)
eee − cei)}) =

− exp{γ(µ(ei + x
∑
j 6=i ej) +

γλ(ei+x
∑

j 6=i ej)

2 + cei)}
(41)

Let m = argmine≥0 µ(e) +
1
2γλ(e) + ce. Then, the

best response mapping of agent i is given by,

Bouti (eee−i) = (m− x
∑
j 6=i

ej)
+ , (42)

where (x)+ = max{0, x}. The Nash equilibrium is the
fixed point of the above best response functions, leading
to efforts e = m

1+(N−1)x by each agent at the symmetric
Nash equilibrium.

When agent i purchases a contract (p, α, β), his ex-
pected utility will be given by,

U
in

i (eee, p, α, β) =

E(− exp{−γ(−p+ α · Sei − L
(i)
eee + βL

(i)
eee − c · ei)})

= − exp{γ(p+ (c− α)ei + 1
2α

2γσ2+

(1− β)µ(ei + x
∑
j 6=i ej) +

γ(1−β)2λ(ei+x
∑

j 6=i ej)

2 )}
(43)

Therefore, the best response of agent i, when he enters
the contract, is as follows,

Bini (eee−i) = (m(α, β)− x
∑
j 6=i ej)

+

m(α, β) = argmine≥0
(1− β)µ(e) + 1

2 (1− β)
2γλ(e) + (c− α)e .

(44)

Similar to the two-agent case, we can write the in-
surer’s contract design problem as follows,

maxα,β,eN · {p− αe− βµ(e+ x(N − 1)e)}
s.t., (IR) U

in

i (eee, p, α, β) ≥ uout
(IC) eee = (e, · · · , e) is the effort of the agents

at the NE where all agents purchase contracts
(45)

Here, uout denotes the utility of an agent when he
is opts out of purchasing a contract, while all other
agents purchase contracts. We can again show that the
individual rationality constraints in the above problem
are binding at the optimal contract. Consequently, the
insurer’s optimization problem simplifies to:

maxα,β,m′ N ·
{wout − µ(m′)− (1−β)2γλ(m′)

2 − c·m′
1+(N−1)x −

γα2σ2

2 }
s.t., (IC) m′ = argmine≥0

(1− β)µ(e) + (1−β)2γλ(e)
2 + (c− α)e

(46)
where wout = ln(−uout)

γ . Note also that problem (46)
prescribes identical contracts for all agents.

We now analyze the effect of the pre-screening noise,
σ, on the state of network security, defined as the sum
of all agents’ efforts; with homogeneous agents, this is
equivalent to each agent’s effort.

Theorem 6.1: Assume N homogeneous agents pur-
chase contracts from an insurer, and let m =
argmine≥0 µ(e)+

1
2γλ(e)+ce. Let eo be the effort of an

agent in the no-insurance symmetric equilibrium, e′ and
ê denote the effort in the optimal contract with perfect
pre-screening and no pre-screening, respectively. Then,

(i) If pre-screening is accurate, i.e., σ = 0, and m > 0,
then e′ ≥ eo if and only if µ′(m) < − c

1+(N−1)x . That
is, network security improves after the introduction of
insurance with prefect pre-screening.

(ii) If pre-screening is uninformative, i.e., σ = ∞,
then eo ≥ ê. That is, network security worsens after the
introduction of insurance without pre-screening.

Note that this theorem, as well as its interpretation,
is similar to the statements of Theorem 5.2 for two
heterogeneous agents. In particular, it is straightforward
to check that the conditions of part (i) of these theorems
are equivalent when setting ci = c in Theorem 5.2 and
N = 2 in Theorem 6.1.

Finally, the next theorem shows that with sufficiently
accurate, yet imperfect pre-screening, the use of pre-
screening can lead to improvement of the state of net-
work security compared to the no-insurance equilibrium.

Theorem 6.2: Assume N homogeneous
agents purchase contracts from an insurer. Let
m = argmine≥0 µ(e) + 1

2γλ(e) + ce, and assume
µ′(m) < − c

1+(N−1)x . Let ê and eo be the effort
level of agents in the optimal contract and at the
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no-insurance equilibrium, respectively. Let m̃ be
the effort at which µ′(m̃) = − c

1+(N−1)x . Then, if

σ ≤
µ(m)+ c

1+(N−1)x
m−µ(m̃)− c

1+(N−1)x
m̃

0.5γc2 , ê ≥ eo. That
is, introducing pre-screening improves network security
as compared to the no-insurance equilibrium.

B. The case of risk averse insurer and correlated losses

We next study the problem of designing cyber-
insurance policies in a network of N homogeneous risk-
averse agents with perfect pre-screening (i.e., γi = γ and
ci = c and σi = σ = 0) with correlated losses defined
as follows.

Let θ be the covariance between any two losses, that
is,

Cov(Lieee, L
j
eee) = θ, ∀i 6= j (47)

We further assume that the insurer is risk-averse, with
risk attitude δ ≥ 0 and the vector (L1

eee, · · · , LNeee ) has
the multivariate Gaussian distribution. The insurer can
conduct a pre-screening of each agent’s security posture
and receives the pre-screening outcome Si = ei as the
pre-screening is perfect. Similar to (45), we can write
the insurer’s problem as follows,

maxp,α,β,e
E(− exp{−δ(

∑
i=1,··· ,N p− αSi − βLieee)})

= − exp{Nδ(−p+ αe+ βµ(e+ x(N − 1)e)+
δβ2λ(e+x(N−1)e)

2 + (N−1)
2 δβ2θ)}

s.t., (IR) U
in

i (eee, p, α, β) ≥ uout
(IC) eee = (e, e, · · · , e) is the effort of the agents

at the NE where all the agents purchase contrcts
(48)

As the (IR) constraint is binding, similar to (46), we have

maxα,β,e w
out − µ(m′)− β2δ+(1−β)2γ

2 λ(m′)

− c
1+(N−1)xm

′ − (N−1)
2 δβ2θ

s.t., m′ ∈ argmine≥0

(1− β)µ(e) + γ(1−β)2λ(e)
2 + (c− α)e

(49)

The following theorem characterizes the effect of pre-
screening in the presence of a risk averse insurer.

Theorem 6.3: Let m = argmine≥0 µ(e) +
γ
2λ(e) + c

and assume θ = 0 and m > 0. Then the agents exerts
higher effort than their effort outside the contract if and
only if µ′(m) + 1

2
δγ
γ+δλ

′(m) + c
1+(N−1)x < 0.

Notice that the condition of Theorem 6.3 reduces to
the condition of Theorem 6.1 if we set δ = 0. Also,
notice that the condition of Theorem 6.3 is more likely
to be satisfied for larger values of δ. For instance, if
δ =∞, the condition is always satisfied, and the agents
exert higher effort inside the contract. In other words, if
the insurer is more risk averse, it is more likely that she
encourages agents to exert higher effort as compared to
their efforts outside of the contract.

We close this section by characterizing the effect of
correlation on agents’ efforts given perfect pre-screening.

Theorem 6.4: Assume θ ≥ 0, i.e., positive correlation
between losses. Then, agents’ efforts inside the contract
increase as θ increases.

Theorem 6.4 implies that if agents’ losses are more
correlated, a risk averse insurer encourages the agents to
exert more effort. This is because with correlated losses,
it is more likely for losses to happen simultaneously as
compared to a scenario with independent losses. Note
that when δ = 0 in (49), i.e., when the insurer is risk
neutral, the problem becomes independent of θ, meaning
that the covariance between any two losses does not
affect the optimal contract or the agents’ efforts if the
insurer is risk neutral.

VII. NUMERICAL RESULTS

We next present numerical examples of the findings
of Sections IV-VI. Our main focus is on the impact of
pre-screening noise in various scenarios. Throughout the
first part of this section we use the following parameters:

µ(e) =
10

e+ 1
, λ(e) =

10

(e+ 1)2
, c = 2, γ = 1 . (50)

A. Impact of Agent’s Risk Attitude γ

Figure 1 illustrates the optimal contract as a function
of γ. As the agent becomes more risk-averse, the insurer
can set a higher base premium p, offer a lower discount
factor α, and offer a higher coverage β. In other words,
pre-screening becomes less important as the agent’s risk-
aversion increases, as more risk-averse agents are most
interested in transferring more of their risk to the insurer,
making their own efforts less important.

Figure 2 illustrates network security (agent’s effort),
both inside and outside of a contract, vs. his risk attitude
γ. First, we see that as suggested by Theorem 4.1, the
agent’s effort in the contract is less that his effort outside
of the contract. In other words, insurance decreases
network security. Intuitively, as the agent transfers his
risk to the insurer, he does not have the incentive to
exert high effort. We also observe that the agent’s effort
in the optimal contract is a decreasing function of γ.
This is due to the fact that as shown in Fig. 1, as the
agent becomes more risk-averse, he transfer more risk
to the insurer, and further decreases his effort. Finally,
when the agent is outside of the contract, he can only
decrease his risks by exerting higher effort. Therefore,
we observe that as an agent without insurance becomes
more risk-averse, he exerts higher effort.

B. Impact of Pre-Screening Noise

A Single Risk-Averse Agent: Figure 3 illustrates
the insurer’s profit as a function of the pre-screening
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Figure 1: Parameters of the optimal con-
tract v.s. risk aversion level γ
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Figure 2: Effort of agent vs. risk aversion
level γ
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Figure 3: Insurer’s profit vs. pre-
screening noise σ2 with a single risk-
averse agent

noise σ2. The observation is consistent with Theorem
4.2, which states that the insurer’s profit is a decreasing
function of σ2. Figure 4 illustrates the effort of the agent
inside and outside the contract as a function of σ2. We
see that the effort outside the contract is independent
of the pre-screening noise, while it decreases inside
the contract as σ2 increases. This highlights that as
the insurer becomes less accurate in her observation of
the agent’s effort, she starts to place less importance
on the pre-screening outcome; as a result, it becomes
less beneficial for the agent to exert high effort without
receiving sufficient discount. In other words, low quality
pre-screening dampens its effectiveness in mitigating
moral hazard; consequently, network security worsens.
A second observation here is that as the participation
constraint is always binding, the constant effort outside
the contract also means that the agent’s utility remains
constant regardless of the pre-screening noise. Thus, it
is only the insurer who benefits from pre-screening.

Two Homogeneous Risk-Averse Agents: We next
consider two homogeneous agents with interdependence
factor x = 0.5. Figure 5 shows the insurer’s utility as a
function of the quality of pre-screening, which illustrates
the insurer’s profit decreases when the pre-screening
accuracy decreases. Figure 6 shows the network security
as a function of pre-screening noise. Here, the conditions
of Theorem 6.1 is satisfied. As we can see, security under
the contract is higher than that without insurance for
small values of σ; but as σ increases, security worsens
and drops below that without contract.

Two Heterogeneous Risk-Averse Agents: We next
consider two heterogeneous agents with the following
parameters:

µ(e) = 10
e+1 , λ(e) = 10

(e+1)2 , c1 = 1, c2 = 1.1

γ1 = 1.2 γ2 = 1, x = 0.5 (51)

We assume that the pre-screening noise (σ2) is the
same for both agents. These parameters together satisfy
the condition of Theorem 5.2. Figure 7 shows that
the introduction of insurance can indeed improve the
state of network security provided the pre-screening is

sufficiently accurate. Figure 8 shows that the insurer’s
profit decreases as pre-screening becomes less accurate.

C. On the Sufficient Conditions of Theorem 5.2

Consider an example with parameters similar to those
given in (51), except that γ1 = 1.5 and c2 = 1.5. In this
case, it can be verified that the conditions of Theorem
5.2 do not hold. However, Figure 9 shows that network
security improves after the introduction of insurance.
This example shows that the sufficient conditions in
Theorem 5.2 are not necessary.

Consider again the same parameters given in (51),
except x = 0.15. In this case, it can again be verified
that the conditions of Theorem 5.2 do not hold. Figure
10 shows that the network security worsens with the in-
troduction of insurance and thus the sufficient conditions
are meaningful.

D. Loss with Exponential Distribution and Pre-
Screening with Uniform Distribution: An example

Single Risk-Averse Agent: Throughout our analysis,
we assumed that losses and pre-screening outcomes
are normally distributed. In this section, we provide a
numerical example under the assumption of exponen-
tially distributed losses and uniformly distributed pre-
screening outcomes. We illustrate how our previous
observations hold in this instance as well. Let,

γ = 0.9, c = 0.25, E(Le) = µ(e) = 1
1+e ,

Le ∼ exp( 1
µ(e) ),

Se = e+W, W ∼ Unif(−b, b)
(52)

Figure 11 illustrates the agent’s effort when pre-
screening noise W is uniformly distributed in interval
[−b, b]. This figure shows that even though the loss and
pre-screening outcome are not normally distributed, the
agent’s effort inside the contract is less than outside the
contract; similarly, it remains a decreasing function of b.
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Figure 4: Agent’s effort vs. pre-screening
noise σ2 with a single risk-averse agent
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Figure 5: Principal’s utility vs. σ2 with
two homogeneous risk-averse agents
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Figure 6: Network security (e1+e2) vs.
σ2 with two homogeneous risk-averse
agents
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Figure 7: Network security (e1+e2) vs.
σ2 with two heterogeneous risk-averse
agents
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Figure 8: Principal’s profit vs. σ2 with
two heterogeneous risk-averse agents
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Figure 9: Network security (e1+e2) vs.
σ2 with two heterogeneous risk-averse
agents. In this example, the conditions
of Theorem 5.2 do not hold but network
security improves after the introduction
of insurance.

0 1 2 3 4 5
2

3.5

4

4.5

N
e

tw
o

rk
 S

e
c
u

ri
ty

with countract

without contract

Figure 10: Network security (e1+e2) vs.
σ2 with two heterogeneous risk-averse
agents. In this example, the conditions of
Theorem 5.2 do not hold, and network
security worsens after introduction of
insurance.
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Figure 11: Agent’s effort vs. σ2 with
a single risk-averse agent and exponen-
tially distributed loss.
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Figure 12: Network security (e1+e2) vs.
σ2 with two heterogeneous risk-averse
agents with exponentially distributed in-
terdependent losses.

Model with Two Risk-Averse Agents: We further
consider a network of two risk-averse agents with the
following parameters,

γ1 = γ2 = 0.9, c1 = 0.25, c2 = 0.5, x = 0.5
E(Lie1,e2) = µ(ei + xe−i) =

1
1+ei+xe−i

Lie1,e2 ∼ exp( 1
µ(ei+xe−i)

),

Sei = ei +Wi, Wi ∼ Unif(−b, b), i = 1, 2

(53)

Where, W1 , W2 are independent and uniformly dis-
tributed in interval [−b, b].

Figure 12 illustrates network security in a net-
work of two risk-averse agents with exponentially dis-

tributed interdependent losses and uniformly distributed
pre-screening outcomes. In this example, when pre-
screening is sufficiently accurate (b is sufficiently small),
by exploiting agents’ interdependence, the insurer can
design contracts in a way that network security inside
the contract is higher than prior to the introduction of
insurance. In contrast, when pre-screening is not accurate
enough (b is large), network security inside the contract
falls bellow network security outside the contract. Again,
these observations are consistent with our results under
normally distributed losses and pre-screening.
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VIII. CONCLUSIONS AND DISCUSSIONS

We studied the problem of designing cyber insur-
ance contracts by a single profit-maximizing insurer,
for both risk-neutral and risk-averse agents. While the
introduction of insurance worsens network security in a
network of independent agents, we showed that the result
could be different in a network of interdependent agents.
Specifically, we showed that security interdependency
leads to a profit opportunity for the insurer, created by
the inefficient effort levels exerted by free-riding agents
when insurance is not available but interdependency is
present; this is in addition to risk transfer that an insurer
typically profits from. We showed that security pre-
screening then allows the insurer to take advantage of
this additional profit opportunity by designing the right
contracts to incentivize the agents to increase their effort
levels and essentially selling commitment to interdepen-
dent agents. We show under what conditions this type
of contracts leads to not only increased profit for the
principal and utility for the agents, but also improved
state of network security.

There are a number of directions to pursue to extend
the above results. As mentioned earlier, all our results
are derived under the assumption of perfect information.
Studying the problem with pre-screening under partial
information assumptions would be an important direc-
tion of future research; this would include imperfect
knowledge of the agents’ type by the principal as well as
imperfect knowledge of the interdependence relationship
by the agents and the principal. Other modeling choices
such as alternative use of pre-screening assessment (as
opposed to linear discounts on premiums), and more
general ways of capturing correlated risks (e.g., joint
distribution of losses as opposed to average loss being a
function of joint effort), would also be of great interest.
Finally, a competitive market setting and its effects on
network security is also worth studying.

Appendix: Proofs are given in [27].
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