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ABSTRACT
Cyber insurance is a method for risk transfer but may or may not

improve the state of network security. In this work, we consider a

pro�t-maximizing insurer with voluntarily participating insureds.

We are particularly interested in two features of cybersecurity and

their impact on the contract design problem. �e �rst is the inter-

dependent nature of cybersecurity, whereby one entity’s state of

security depends on its own e�ort and others’ e�ort. �e second is

our ability to perform accurate quantitative assessment of security

posture at a �rm level by combining recent advances in Internet

measurement and machine learning techniques. We observe that

security interdependency leads to a “pro�t opportunity” for the

insurer, created by the ine�cient e�ort levels exerted by agents

who do not account for risk externalities when insurance is not

available; this is in addition to risk transfer that an insurer pro�ts

from. Security pre-screening allows the insurer to take advantage

of this opportunity by designing appropriate contracts which incen-

tivize agents to increase their e�ort levels, allowing the insurer to

e�ectively “sell commitment” to interdependent agents, in addition

to risk transfer. We identify conditions under which this type of

contracts lead to an improved state of network security.

CCS CONCEPTS
•Networks→ Network economics; •Security and privacy→
Network security;

1 INTRODUCTION
Faced with a myriad of increasingly costly and frequent cyber

threats, organizations and businesses not only invest in so�ware

security mechanisms such as �rewalls and intrusion detection sys-

tems, but increasingly also turn to ways of be�er managing the risk.

Within this context, cyber insurance has emerged as an accepted

risk mitigation mechanism, that allows purchasers of insurance

policies to transfer their residual risks to the insurer.

�e design of cyber insurance contracts, and their e�ects on

�rms’ security behavior, has been extensively studied in the liter-

ature [2, 5, 8, 11, 15, 17–20]. �ese studies show that the impact

of cyber insurance on �rms’ investments, and the resulting state

of network security, depend on the assumptions on the insurance

market and the assumed model of interdependency among �rms.

In particular, for the market model, existing literature has con-

sidered either competitive or monopolistic insurance markets. �e

works in [15, 17–19] study competitive insurance markets with

interdependent agents under voluntary insurance. �e authors of

∗
�e work is partially supported by the NSF under grants CNS-1422211 and CNS-

1616575. A preliminary version of this work appeared in the International Conference

on Game�eory for Networks (Gamenets) 2017 [9]. Numerical simulations and proofs

are available in the online appendix [1].

[18, 19] consider a competitive market with homogeneous agents,

and show that insurance o�en deteriorates the state of network

security as compared to the no-insurance scenario. [17] studies a

network of heterogeneous agents and shows that the introduction

of insurance cannot improve the state of network security.

�e impact of insurance on the state of network security in

the presence of a monopolistic pro�t neutral (welfare maximizing)

insurer has been studied in [4, 5, 8, 16]. In these models, as the

insurer’s goal is to maximize social welfare, under the assumption

that agents’ participation in the market can be made compulsory,

insurance contracts can lead to improvement of network secu-

rity. Agents’ incentives for improving their investments is due to

premium discrimination, i.e., agents with higher investments in

security pay lower premiums. An insurance market with a monopo-

listic pro�t maximizing insurer, under the assumption of voluntary

participation, has been studied in [11], which shows that in the pres-

ence of moral hazard, insurance cannot improve network security

as compared to the no-insurance scenario.

In this paper, we are similarly interested in understanding the

role of cyber insurance and its e�cacy as an incentive mechanism

for improved network security. We adopt two key assumptions as

in [11], which we believe be�er capture the current state of cyber

insurance markets but di�er from the majority of existing literature;

we assume (1) a pro�t-maximizing cyber insurer, and (2) voluntary

participation, i.e., agents may opt out of purchasing a contract.

Furthermore, we focus on the e�ects of two distinct features of

cybersecurity in the context of cyber insurance. �e �rst is the

interdependent nature of cybersecurity, whereby one entity’s state

of security depends on not only its own investment and e�ort, but

also on the investments and e�orts of others in the same eco-system

(i.e., externalities), see e.g., [6, 7, 10, 14]. In other words, the risk

that an insured transfers to the insurer is not only a function of its

own actions, but also of other entities’ actions who may or may

not be seeking to transfer risks. �e second distinct feature is the

fact that recent advances in Internet measurement combined with

machine learning techniques now allow us to perform accurate,

quantitative security posture assessments at a �rm level [12]. Such

assessments can be used to mitigate information asymmetry about

agents’ security posture, and also as audit tools, allowing for coor-

dination on higher e�ort levels by interdependent agents, see e.g.,

[3]. Here, we are interested in the former, i.e., the use of security

posture assessments as a tool to perform an initial security audit,

or pre-screening, of a prospective client to be�er enable premium

discrimination and the design of customized policies.

Towards this end, we present models that take into account

both interdependence and security assessments, in addition to the

pro�t-maximizing insurer and voluntary participation assumptions

mentioned earlier. We are interested in understanding the impact
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of each of these elements, as well as their combined e�ect, on the

pro�t of the insurer, the participation incentives, and last but not

least, the state of security with and without insurance. In doing so

we also try to separate out the impact of these elements from that

induced by risk aversion and risk transfer.

Our main �ndings are as follows: (1) Security interdependency

leads to a “pro�t opportunity” for the insurer, created by the inef-

�cient e�ort levels exerted by free-riding agents when insurance

is not available; the pro�t resulting from this ine�ciency gap is in

addition to the risk transfer that an insurer typically pro�ts from

given risk averse agents. We shall use risk neutral agent models to

demonstrate this phenomenon, as in this case risk transfer does not

exist and were it not for interdependency the market for insurance

would not even exist; yet, we show that because of interdependence,

there exists a pro�t opportunity for the insurer. In other words, be-

cause of the spill-over e�ect of security investments, the improved

security posture of one agent not only bene�ts this agent itself but

all other agents dependent on it, resulting in a multiplication e�ect

of bene�t to the insurer in the form of reduced total loss. (2) Security

pre-screening allows the insurer to take advantage of this additional

pro�t opportunity, by designing appropriate contracts that incen-

tivize agents to increase their e�ort levels. We conclude that in the

presence of security interdependency, the insurer can essentially

sell commitment to agents with dependent risks by engaging them

in contracts designed to incentive high levels of security e�ort: one

is guaranteed of another’s higher e�ort a�er purchasing a contract.

�e remainder of the paper is organized as follows. We present

the model and preliminaries in Section 2. We analyze the optimal

contracts for two risk-neutral and two risk-averse agents in Sec-

tion 3. We discuss an N -homogeneous-agent case and possible

extensions in Section 4, and conclude in Section 5.

2 MODEL AND PRELIMINARIES
We consider a single-period contract design problem between a

risk-neutral insurer and either one or two agents
1
; we refer the

interested reader to [13] for an overview of contract theory. We are

primarily interested in the contract design problem for risk-averse

agents; however, we will also examine risk-neutral agents because

it allows us to isolate risk transfer from other factors.

In a single agent model, the agent exerts e�ort e ∈ [0,+∞)
towards securing his system, incurring a cost of c per unit of e�ort.
Let Le denote the loss, a random variable, that the agent experiences

given his e�ort e . We assume Le has a normal distribution, with

mean µ (e ) ≥ 0 and variance λ(e ) ≥ 0. We assume µ (e ) and λ(e )
are strictly convex, strictly decreasing, and twice di�erentiable.

�e decreasing assumption implies that increased e�ort reduces

the expected loss, as well as its unpredictability, for the agent.

�e convexity assumption suggests that while initial investment

in security leads to considerable reduction in loss, the marginal

bene�t decreases as e�ort increases. We assume once a loss Le is
realized, it is observed by both the insurer and the agent through,

e.g., claims �led by the agent and post-incident audit by the insurer.

We further assume that λ(e ) is su�ciently small compared to µ (e ),
so that Pr (Le < 0) is negligible.2

1
We will use she/her and he/his to refer to the insurer and agent(s), respectively.

2
Extension to other types of risk distributions remains a direction of future work.

In the two interdependent agent model, we will assume agent

i’s loss is given by,

L
(i )
e1,e2 ∼ N (µ (ei + x · e−i ), λ(ei + x · e−i )) .

Here, {−i} = {1, 2} − {i}, and L
(i )
e1,e2 is a random variable denoting

the loss that agent i experiences, given both agents’ e�orts. �e

interdependence factor is denoted by x , and we let 0 ≤ x < 1.

When designing cyber insurance contracts for such agent(s),

although an agent’s exerted e�ort is not observable by the insurer

(i.e., there is moral hazard), we assume that the insurer can con-

duct a pre-screening of the agent’s security standing. �rough

pre-screening, the insurer obtains a pre-screening assessment or

outcome Sei = ei +Wi , i = 1, 2, on each agent, whereWi is a

zero mean Gaussian noise with variance σ 2i . We assumeWi ’s are

independent, and that the agent(s) and the insurer know the dis-

tribution of Sei . We also assume Sei is conditionally independent

of Lei , given ei . �e pre-screening outcome Sei will be used by the

insurer in determining the terms of the contract.

We next present preliminary results on the contract design prob-

lem in the single-agent case.

Linear Contract and the Insurer’s Payo�. We consider the design

of a set of linear contracts. Speci�cally, the contract o�ered by the

insurer to an agent consists of a base premium p, a discount factor
α , and a coverage factor β . �e agent pays a premium p−α ·Se , and
receives β · Le as coverage in the event of a loss. We let 0 ≤ β ≤ 1,

i.e., coverage never exceeds the actual loss. �us, the insurer’s

utility (pro�t) is given by:

V (p,α , β, e ) = p − α · Se − β · Le .

�e insurer’s expected pro�t is V (p,α , β, e ) = p − αe − βµ (e ).

Risk-Neutral Agent. �e utility (and expected utility) of a risk-

neutral agent is given by,

U out (e ) = −Le − ce ⇒ U
out

(e ) = E[U out (e )] = −µ (e ) − ce (1)

If the agent chooses not to enter a contract, he bears the full cost of

his e�ort as well as any realized loss. �erefore, the optimal e�ort

of the agent outside the contract,m, is

m = argmin

e≥0
µ (e ) + ce ,

and his expected utility outside the contract is uo := U
out

(m).
On the other hand, if the agent purchases a contract (p,α , β )

from the insurer, then his utility, and expected utility, are given by:

U in (p,α , β , e ) = −p + αSe − Le + βLe − ce ⇒

U
in

(p,α , β , e ) = E[U in (p,α , β , e )] = −p + (α − c )e + (β − 1) · µ (e )

Risk-Averse Agent. For simplicity, we use the same notation for

risk-averse agents as for risk-neutral agents. �e utility of a risk-

averse agent is given by:

U out (e ) = − exp{−γ · (−Le − ce )} , (2)

where γ denotes the risk a�itude of the agent; a higher γ implies

more risk aversion. We shall assume that γ is known to the insurer,

thereby eliminating adverse selection and solely focusing on the

moral hazard aspect of the problem.
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Using basic properties of the normal distribution, we have the

following expected utility for the agent:

U
out

(e ) = E[U out (e )] = − exp{γ µ (e ) +
1

2

γ 2λ(e ) + γce} . (3)

Using (3), the optimal e�ort for an agent outside the contract is

given bym := argmine≥0
{
µ (e ) + 1

2
γλ(e ) + ce

}
. Again, let uo :=

U
out

(m) denote the expected payo� of the agent without a contract.

If a risk-averse agent accepts a contract (p,α , β ), his utility is

given by:

U in (p,α , β , e ) = − exp{−γ · (−p + α · Se − Le + β · Le − ce )} .

Noting that Se and Le are conditionally independent, his expected

utility is:

U
in

(p,α , β, e ) = E[U in (p,α , β , e )] =

− exp{γ (p + (c − α )e + 1

2
α2γσ 2 + (1 − β )µ (e ) + 1

2
γ (1 − β )2λ(e ))} .

The Insurer’s Problem. �e insurer designs the contract (p,α , β)
to maximize her expected payo�. In doing so, the insurer also has

to satisfy two constraints: Individual Rationality (IR), and Incentive

Compatibility (IC). �e �rst stipulates that a rational agent will not

enter a contract with expected payo� less than his outside option

uo , and the second that the e�ort desired by the insurer should

maximize the agent’s expected utility under that contract. Formally,

max

p,α ≥0,0≤β ≤1,e≥0
V (p,α , β , e ) = p − αe − βµ (e )

s.t. (IR) U
in

(p,α , β , e ) ≥ uo (4)

(IC) e ∈ argmax

e ′≥0
U
in

(p,α , β, e ′)

�e above optimization problem can be simpli�ed, for risk-

neutral and risk-averse agents, respectively. First, note that as

the base premium is a constant in the contract, the (IC) constraint

for a risk-neutral agent can be rewri�en as follows:

e ∈ arg min

e ′≥0
(c − α )e ′ + (1 − β )µ (e ′) .

Similarly, the (IC) constraint for a risk-averse agent is:

e ∈ argmine ′≥0 (c − α )e ′ + (1 − β )µ (e ′) + 1

2
γ (1 − β )2λ(e ′) .

Next, we can simplify the (IR) constraint using the following

lemma; the proof can be found in the online appendix [1].

Lemma 2.1. �e (IR) constraint is binding in the optimal contract.

By lemma 2.1, the (IR) constraint of a risk-neutral agent can be

wri�en as:

p + (c − α )e + (1 − β )µ (e ) = −uo ,

and, for a risk-averse agent,

p + (c − α )e +
1

2

α2γσ 2 + (1 − β )µ (e ) +
1

2

γ (1 − β )2λ(e ) = wo ,

wherewo
:=

ln(−uo )
γ = mine≥0{µ (e ) +

1

2
γλ(e ) + ce}.

Using the above expressions to substitute for the base premium p
in the objective function in (4), and using the simpli�ed expressions

for the (IC) constraints, we rewrite the insurer’s contract design

problem as follows.

Insurer’s problem with a risk-neutral agent:

max

α ≥0,0≤β ≤1,e≥0
− uo − µ (e ) − ce

s.t., e ∈ arg min

e ′≥0
(c − α )e ′ + (1 − β )µ (e ′) (5)

Insurer’s problem with a risk-averse agent:

max

α ≥0,0≤β ≤1,e≥0
wo − µ (e ) −

1

2

γ (1 − β )2λ(e ) − ce −
1

2

α2γσ 2

s.t., e ∈ arg min

e ′≥0
(c − α )e ′ + (1 − β )µ (e ′) +

1

2

γ (1 − β )2λ(e ′) (6)

We now solve the contract design problems posed in (5) and (6).

Risk-Neutral Agent (Problem (5)). In this case, the objective func-

tion of the insurer is given by −uo − µ (e ) − ce . However, note that
uo = maxe≥0{−µ (e ) − ce}, and therefore the insurer’s pro�t is at

most zero. A contract with (p = 0,α = 0, β = 0) will yield a payo�

of zero, making it an optimal contract. We thus conclude that it

is optimal for the insurer to not o�er a contract to a risk-neutral

agent. Also note that in this case the quality of pre-screening, or

indeed the availability of pre-screening regardless of the quality,

plays no role in either the insurer’s or agent’s decisions.

Risk-Averse Agent (Problem (6)). We have the following theorem

on the state of network security, de�ned as the e�ort exerted by

the agent, before and a�er the purchase of an insurance contract.

Theorem 2.2. Assume that (α̂ , ˆβ, ê) solves optimization problem
(6). �en ê ≤ m, wherem is the level of e�ort outside the contract.

�eorem 2.2 illustrates the ine�ciency of cyber insurance as a

tool for improving the state of security. Existing work in [16, 18]

have also arrived at a similar conclusion when studying competi-

tive/unregulated cyber insurance markets. Note also that �eorem

2.2 holds regardless of the pre-screening quality. We next examine

the e�ect of pre-screening on the insurer’s pro�t.

Theorem 2.3. Let v (α , β, e,σ 2) = wo − µ (e ) − 1

2
γ (1 − β )2λ(e ) −

c · e − 1

2
α2γσ 2 denote the payo� of the principal, at a contract (α , β )

when the agent exerts e�ort e , and the noise of pre-screening is σ 2.
Let z (σ 2) := {maxα ≥0,0≤β ≤1,e≥0v (α , β, e,σ

2), s.t.(IC)} be the prin-
cipal’s payo� under the optimal contract as a function of the pre-
screening noise. We then have z (σ 2

1
) ≤ z (σ 2

2
), ∀σ 2

1
≥ σ 2

2
. In other

words, be�er pre-screening improves the insurer’s pro�t.

�e following theorem presents a su�cient condition under

which the availability of a pre-screening assessment improves net-

work security, compared to the no pre-screening scenario. Note

that we use σ = ∞ for evaluating the no pre-screening scenario.

�e equivalence follows from the fact that, as shown in the appen-

dix, by se�ing σ = ∞, the insurer’s optimal choice will be to set

α = 0, which e�ectively removes the e�ects of pre-screening.

Theorem 2.4. Let e1, e2, e∞ denote the optimal e�ort of the agent
in the optimal contract when σ = σ1, σ = σ2 and σ = ∞, respec-

tively. Let k (e,α ) = µ′ (e )+
√
µ′ (e )2−2γ (c−α )λ′ (e )
−γ λ′ (e ) . If k (e,α1)2λ(e ) −

k (e,α2)
2λ(e ) is non-decreasing in e for all 0 ≤ α1 ≤ α2 ≤ c , then

e1 ≥ e2 if σ1 ≤ σ2. In other words, be�er pre-screening improves
network security. In addition, if k (e, 0)2λ(e ) − k (e,α )2λ(e ) is non-
decreasing in e for all 0 ≤ α ≤ c , then e1 ≥ e∞. In other words,
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availability of a pre-screening assessment improves network security
over the no pre-screening scenario.

Several instances of µ (e ) and λ(e ), e.g., (µ (e ) = 1

e , λ(e ) =
1

e2 ),

and (µ (e ) = exp{−e}, λ(e ) = exp{−2e}), satisfy the condition of

�eorem 2.4.

Our analysis of the single-agent case leads to the following con-

clusions. First, as expected, a market for insurance for a single agent

(or independent agents) exists if and only if agents are risk-averse.

We further observe that when the market exists, the introduction

of pre-screening bene�ts the insurer (�eorem 2.3) as well the state

of network security (�eorem 2.4). In the remainder of the paper,

we are interested in investigating similar properties of the contract

design problem in the presence of interdependent agents.

3 ROLE OF INTERDEPENDENCE IN A
NETWORK OF TWO AGENTS

In order to design optimal contracts, and especially evaluating

agents’ participation constraints, an insurer needs to evaluate the

agents’ utilities and contracts in the following three scenarios:

(i) neither agent enters a contract;

(ii) one of the agents enters a contract, while the other one

opts out; and

(iii) both agents purchase contracts.

Here, Case (ii) is the outside option for agents in Case (iii), and

Case (i) is the outside option for agents in Case (ii). �erefore, in

order to evaluate the participation constraints of agents when both

purchase insurance contracts (Case (iii)), we �rst need to �nd the

optimal contracts and agents’ payo�s in Cases (i) and (ii). In the

remainder of this section, we shall �rst consider risk-neutral agents.

�e intention of this case is to exclude the e�ect of risk transfer and

solely focus on the e�ect of interdependence. We will then examine

the combined e�ect of risk transfer and risk interdependency with

risk-averse agents.

3.1 Case (i): Neither enters a contract
Let Goo

denote the game between two risk-neutral agents neither

of which have purchased cyber insurance contracts. �e expected

payo�s of a risk-neutral agent, with unit cost of e�ort ci > 0 at the

e�ort pro�le (e1, e2), is given by:

U
out

i (e1, e2) = −µ (ei + xe−i ) − ciei .

�e best response of agent i is therefore given by,

Bouti (e−i ) = argmaxei ≥0 −µ (ei + xe−i ) − ciei .

�e above optimization problem is convex, and has the following

solution:

Bouti (e−i ) = (mi − xe−i )
+, mi = argmine≥0 µ (e ) + cie, i = 1, 2.

where (a)+ := max{a, 0}. �e Nash equilibrium is given by the

�xed point of the best-response mappings Bout
1

(e2) and Bout
2

(e1),
i.e., the following set of equations:

e1 = (m1 − xe2)
+, e2 = (m2 − xe1)

+ . (7)

It is straightforward to show that given 0 ≤ x < 1, the above

equations have a unique �xed point, leading to the e�ort of agent i ,

e∗i (mi ,m−i ), at the unique Nash equilibrium:

e∗i (mi ,m−i ) =




0 ifmi ≤ x ·m−i
mi ifm−i ≤ x ·mi
mi−x ·m−i

1−x 2
o.w

(8)

�erefore, uooi = U
out

i (e∗
1
(m1,m2), e

∗
2
(m2,m1)) is the utility of

agent i in the equilibrium when agents do not choose to enter

the contract. As we will see shortly, an insurer uses her knowledge

of uooi to evaluate agents’ outside options when proposing optimal

contracts.

3.2 Case (ii): Only one enters a contract
Assume without loss of generality that agent 1 enters a contract,

while agent 2 opts out. We use Gio
to denote the game between

the insured agent 1 and the uninsured agent 2. �e expected payo�

of the risk-neutral agents in this case is as follows:

U
in

1
(e1, e2,p1,α1, β1) = −p1 − (c1 − α1)e1 − (1 − β1)µ (e1 + xe2)

U
out

2
(e1, e2) = −µ (e2 + xe1) − c2e2

Let Bin
1
(e2) denote the best response of agent 1. �e following

optimization problem �nds the best response of the �rst agent,

Bin
1
(e2) = argmaxe1≥0 −p1 − (c1 − α1)e1 − (1 − β1)µ (e1 + xe2) .

�e above optimization problem is convex, and has a solution given

by,

Bin
1
(e2) = (m1 (α1, β1) − xe2)

+,

wherem1 (α1, β1) = argmine≥0 {(c1 − α1)e + (1 − β1)µ (e )} .

For the uninsured agent 2, it is easy to see that the best-response

function is given by Bout
2

(e1), the same best response function in

game Goo
.

We can now �nd the Nash equilibrium as the �xed point of the

best-response mappings. Agents’ e�orts at the equilibrium are

e∗
1
(m1 (α1, β1),m2) and e∗

2
(m2,m1 (α1, β1)), as de�ned in (8). For

notational convenience, we denote these e�orts by e∗
1
, e∗

2
.

Similar to Lemma 2.1, we can show that the (IR) constraint is

binding under the optimal contract. �erefore, similar to the single

agent case, we can write the insurer’s problem by replacing the

base premium p1, leading to,

maxα1≥0,0≤β1≤1,e∗
1
≥0,e∗

2
≥0 −u

oo
1
− µ (e∗

1
+ xe∗

2
) − c1e

∗
1

s.t., (IC) e∗
1
, e∗

2
are the agents’ e�orts in the NE of Gio (9)

Let uio
2

be the second agent’s utility when the insurer o�ers the

optimal contract (determined by solving problem (9)) to the �rst

agent and the second agent opts out. Similarly, uoi
1

denotes the �rst

agent’s utility when he opts out and the second agent purchases

the optimal contract. �e insurer uses her knowledge of uio
2

and

uoi
1

in designing a pair of contracts to a�ract both agents.

3.3 Case (iii): Both purchase contracts
Let Gii

denote the game between the two agents when they are

both in a contract. Assume the insurer o�ers each agent i a contract
(pi ,αi , βi ). �e expected utility of the agents when both purchase

contracts is given by

U
in

i (e1, e2,pi ,αi , βi ) = −pi − (ci − αi )ei − (1 − βi )µ (ei + xe−i ) .
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Following steps similar to those in Section 3.2, the best-response

function of agent i , denoted Bini , is given by

Bini (e−i ) = (mi (αi , βi ) − xe−i )
+ ,

wheremi (αi , βi ) is the solution to the following equation,

mi (αi , βi ) = argmine≥0 {(ci − αi )e + (1 − βi )µ (e )} .

�e agents’ e�orts at the Nash equilibrium are again the �xed point

of the best-response mappings, and will be given by

e∗i (mi (αi , βi ),m−i (α−i , β−i )), with e∗i (., .) de�ned in (8). For no-

tational convenience, we will denote these as e∗i .
To write the insurer’s problem, note that the outside option of

agent 1 (resp. 2) from this game is his utility in the game Goi
(resp.

Gio
). Similar to Lemma 2.1, we can show that the (IR) constraints

are binding. �erefore, we can write the insurer’s contract design

problem as follows,

vii := maxα1≥0,0≤β1≤1,α2≥0,0≤β2≤1,e∗
1
≥0,e∗

2
≥0 −u

oi
1
− uio

2

−µ (e∗
1
+ xe∗

2
) − c1e

∗
1
− µ (e∗

2
+ xe∗

1
) − c2e

∗
2

s.t., (IC) e∗
1
, e∗

2
are the agents’ e�orts in the NE of Gii

(10)

3.4 Optimal Contracts in a Network of Two
Risk-Neutral Agents

We now analyze the properties of the contracts designed based on

the optimization problem (10), and their impact on agents’ e�orts.

Theorem 3.1. Let eoi denote the e�ort of agent i when insurance
is not available, and e ini denote the e�ort of agent i in the solution to
(10), i.e., when purchasing the optimal contract. Also, let ẽi denote
the e�ort level of agent i in the socially optimal outcome (i.e, the
e�orts maximizing the sum of agents’ utilities). �en, the insurer
o�ers contracts to both agents, with the following properties,

(i) e ini = ẽi , for i = 1, 2.
(ii) e in

1
+ e in

2
≥ eo

1
+ eo

2
.

(iii) vii ≥ U 1 (ẽ1, ẽ2) +U 2 (ẽ1, ẽ2) −U 1 (e
o
1
, eo

2
) −U 2 (e

o
1
, eo

2
).

�eorem 3.1, implies the following. First, in contrast to the

single risk-neutral scenario, the insurer can make pro�t by o�ering

a contract to interdependent risk-neutral agents. To see why, note

that due to interdependency, agents under-invest in security at

the no-insurance equilibrium. �is leads to an opportunity for

the insurer, in which she uses her pre-screening assessments to

o�er premium discounts and (full) coverage of losses, and in turn

requires the agents to exert higher e�orts (in this particular case,

the socially optimal levels of e�ort). �is increase in e�orts is in

the insurer’s interest, as it lowers the risks of both of her contracts.

�is e�ect can be viewed as the insurer “selling commitment” to

agents, by providing each agent with the commitment of the other

agent to exert higher e�ort.

Part (iii) of the theorem shows that the pro�t opportunity for the

insurer is even higher than the welfare gap between the socially

optimal and Nash equilibrium outcomes. �is is due to the fact

that the outside option for agent i is an outcome in which the

insurer o�ers a contract (only) to agent −i . �e insurer will select

this contract in a way that it requires agent −i to exert low e�ort

and get high coverage, e�ectively forcing agent i to bear the full

cost of e�ort, leading to a utility lower than the no-insurance Nash

equilibrium for agent i . Consequently, as agents’ (IR) constraints are

binding, it follows that the insurer’s pro�t is in fact the gap between

welfare a�ained under the optimal contract, and the welfare at these

low payo�, unilateral opt-out outcomes.

3.5 Optimal Contracts in a Network of Two
Risk-Averse Agents

We next analyze the case of two risk-averse agents. Again, in

order to evaluate the agents’ participation constraints and �nding

the optimal contracts, we need to account for three possible cases

based on the agents’ alternatives. �e ensuing analysis is similar

to that presented earlier in this section, by replacing the agent’s

utility functions with their risk-averse versions and solving the

resulting optimization problems. �e details are thus provided

in the appendix. �e simpli�ed insurer’s optimization problem is

given by

vii := maxα1≥0,0≤β1≤1,α2≥0,0≤β2≤1,e∗
1
≥0,e∗

2
≥0 woi

1
+wio

2

−µ (e∗
1
+ xe∗

2
) − 1

2
γ1 (1 − β1)

2λ(e∗
1
+ xe∗

2
) − c1e

∗
1
− 1

2
α2
1
γ1σ

2

1

−µ (e∗
2
+ xe∗

1
) − 1

2
γ2 (1 − β2)

2λ(e∗
2
+ xe∗

1
) − c2e

∗
2
− 1

2
α2
2
γ2σ

2

2

s.t., (IC) e∗
1
, e∗

2
are the agents’ e�orts in the NE of Gii

wherewoi
1
=

ln(−uoi
1
)

γ1 andwio
2
=

ln(−u io
2
)

γ2 .

We �rst consider the utility of the insurer. Note that the insurer

always has the option to not use the outcome of pre-screening by

se�ing α = 0 in the contract. �erefore, the insurer’s utility in the

optimal contract with pre-screening is larger than her utility in the

optimal contract without pre-screening.

We now turn to the e�ect of pre-screening on the state of network

security. We again use the total e�ort towards security, e1 + e2, as
the metric for evaluating network security.

Theorem 3.2. Letmi = argmine≥0 µ (e ) +
1

2
γiλ(e ) + cie . Let e ini

and eoi denote the e�ort of agent i in the optimal contract and in the
no-insurance equilibrium, respectively.

(i) Assume perfect pre-screening, i.e., σ1 = σ2 = 0. �en,
e in
1
+ e in

2
≥ eo

1
+ eo

2
, if,

1. µ ′(mi ) <
−ci+xc−i
1−x 2

, i = 1, 2

2. (µ ′)−1 ( −ci+xc−i
1−x 2

) ≥ x (µ ′)−1 ( −c−i+xci
1−x 2

), i = 1, 2

(ii) Assume both pre-screening assessments are uninformative, i.e.,
σ1 = σ2 = ∞. �en e in

1
+ e in

2
≤ eo

1
+ eo

2
.

Recall that by �eorem 2.2, with a single risk-averse agent, the

insurer pro�ts from the agent’s interest in risk transfer. However,

the introduction of insurance always reduces network security. In

contrast, �eorem 3.2 shows that in the case of interdependent

agents, network security can improve, while the insurer continues

to make pro�t. �erefore, it is the agents’ interdependency that

plays a role in the improvement of network security. Note that in

this case, the insurer is making pro�t from the agents’ risk aversion,

as well as their interdependency.

4 DISCUSSION
�e previous results can also be extended to a network of N homo-

geneous risk-averse agents, in which γi = γ , ci = c , and σi = σ , ∀i ,
and agent i’s loss is given by,

L
(i )
eee ∼ N (µ (ei + x

∑
j,i

ej ), λ(ei + x
∑
j,i

ej )) .
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where eee = (e1, e2, · · · , eN ) denotes the vector of agents’ e�orts.

�e insurer again gathers assessments Si = ei +W , whereW is a

zero mean Gaussian noise with variance σ 2.
In the following two theorems, we show that under a su�cient

condition, insurance improves network security as compared to no

insurance scenario for su�ciently small pre-screening noise.

Theorem 4.1. Assume N homogeneous agents purchase contracts
from an insurer, and letm = argmine≥0 µ (e ) +

1

2
γλ(e ) + ce . Let eo

be the e�ort of an agent in the no-insurance symmetric equilibrium,
e ′ and ê denote the e�ort in the optimal contract with perfect pre-
screening, and without pre-screening, respectively. �en,

(i) If pre-screening is accurate, i.e., σ = 0, andm > 0, then e ′ ≥ eo

if and only if µ ′(m) < − c
1+(N−1)x . �at is, network security improves

a�er the introduction of insurance with prefect pre-screening.
(ii) If pre-screening is uninformative, i.e., σ = ∞, then eo ≥ ê .

�at is, network security worsens a�er the introduction of insurance
without pre-screening.

Note that this theorem, as well as its interpretation, are similar

to the statements of �eorem 3.2 for two heterogeneous agents. In

particular, it is straightforward to check that the conditions of part

(i) of these theorems are equivalent when se�ing ci = c in �eorem

3.2 and N = 2 in �eorem 4.1.

�e next theorem shows that with su�ciently accurate, yet im-

perfect prescreening, the use of pre-screening can lead to improve-

ment of the state of network security compared to the no-insurance

equilibrium.

Theorem 4.2. Assume N homogeneous agents purchase contracts
from an insurer. Let
m = argmine≥0 µ (e )+

1

2
γλ(e )+ce , and assume µ ′(m) < − c

1+(N−1)x .
Let ê and eo be the e�ort level of agents in the optimal contract and at
the no-insurance equilibrium, respectively. Let m̃ be the e�ort at which

µ ′(m̃) = − c
1+(N−1)x . �en, if σ ≤

µ (m)+ c
1+(N−1)xm−µ (m̃)− c

1+(N−1)x m̃
0.5γ c2 ,

ê ≥ eo . �at is, introducing pre-screening improves network security
as compared to the no-insurance equilibrium.

�ere are a number of other directions to pursue to extend our

results. Firstly, all our results are derived under the assumption of

perfect information. Studying the same contract design problem

with pre-screening under partial information assumptions would

be an important direction of future research; this would include

imperfect knowledge of the agents’ type by the principal as well as

imperfect knowledge of the interdependence relationship by the

agents and the principal. Othermodeling choices such as alternative

use of pre-screening assessment (as opposed to linear discounts on

premiums), and capturing correlated risks (e.g., joint distribution

of losses as opposed to average loss being a function of joint e�ort),

would also be of great interest.

It should be noted that our key �nding in the paper, that inter-

dependent risk presents an opportunity to be embraced is counter

to current practices, where underwriters typically avoid risk de-

pendencies for fear of concurrent losses. �is re�ects a certain

degree of risk aversion on the insurer’s part, which our model of ex-

pected utility maximization does not capture. �is presents another

important direction of future work.

5 CONCLUSION
We studied the problem of designing cyber insurance contracts

by a single pro�t-maximizing insurer, for both risk-neutral and

risk-averse agents. While the introduction of insurance worsens

network security in a network of independent agents, we showed

that security interdependency leads to a pro�t opportunity for the

insurer, created by the ine�cient e�ort levels exerted by free-riding

agents when insurance is not available but interdependency is

present; this is in addition to risk transfer that an insurer typically

pro�ts from. We showed that security pre-screening then allows

the insurer to take advantage of this additional pro�t opportunity

by designing the right contracts to incentivize the agents to increase

their e�ort levels.
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