
DiPLe: Learning Directed Collaboration Graphs
for Peer-to-Peer Personalized Learning
Xue Zheng

Electrical and Computer Engineering
The Ohio State University

zheng.1822@osu.edu

Parinaz Naghizadeh
Integrated Systems Engineering

The Ohio State University
naghizadeh.1@osu.edu

Aylin Yener
Electrical and Computer Engineering

The Ohio State University
yener@ece.osu.edu

Abstract—We study fully decentralized learning in which
agents learn collaborative, yet personalized prediction models.
Specifically, when learners’ local datasets are non-IID, a collab-
oratively trained global model (such as those learned through
most federated learning algorithms to minimize the sum of
losses across all agents) may sacrifice the local performance
on agents’ private datasets. To address this issue and enable
personalized learning, we propose DiPLe: an algorithm for
Directed Personalized Learning. Through our algorithm, each
agent identifies “relevant” agents with whom to exchange model
information. This leads to a weighted and directed collaboration
graph. Agents repeatedly update this graph, and then exchange
information with neighboring agents on this learned graph, to
collaboratively train their personalized models. We provide ana-
lytical results on the generalization error bounds and convergence
of our proposed learning method. We verify the performance of
DiPLe through numerical experiments, and show its advantages
in terms of personalization compared to a number of existing
federated learning and personalized learning algorithms.

Index Terms—Personalized learning, Decentralized learning,
Federated learning.

I. INTRODUCTION

In recent years, there has been increasing interest on Feder-
ated Learning (FL) as an architecture for enabling distributed
and collaborative learning [1]. This architecture consists of
a central server and a number of distributed agents/clients.
The central server repeatedly collects locally trained prediction
models from (a subset of) these distributed agents, combines
them together (e.g. by averaging) to obtain a global model, and
communicates this shared model back to the agents. FL has
the ability to train a single global model from decentralized
data, while respecting the privacy of agents’ local datasets.

Despite its many desirable properties, FL suffers from a
number of drawbacks, one of which is the lack of personal-
iziation in the learned model. To illustrate this, consider the
virtual keyboard, one of the commonly proposed applications
of FL, which trains a shared global model to automatically
give word suggestions to users. A single shared model may
not provide equally accurate recommendations to all users;
for instance, an emoji or symbol may have almost opposite
meanings to users with different backgrounds. With a shared
global model, many users and particularly minority groups,
will inevitably experience poor (local) performance. More

This work has been supported in part by NSF grants CNS-2112471 and
CCF-2144283.

generally, in many real-world applications, data distributions
tend to be highly heterogeneous among different agents, and
an FL algorithm learning a global consensus model will be
sensitive to the heterogeneity of data distributions [1]. This
has led to an interest in developing collaborative learning
algorithms that combine the best of both worlds: improv-
ing learning rate and generalization by leveraging multiple
learners’ distributed computation power and datasets, while
maintaining the specialized and personalized nature of each
(heterogeneous) agent’s local model.

Motivated by this, we propose DiPLe: an algorithm for
Directed Personalized Learning. DiPLe enables each agent to
learn a personalized model in a fully decentralized setting (i.e.,
without a central server) through peer-to-peer collaboration
with a carefully selected subset of other agents. This is done
by iterating through a two-stage process: learning the collabo-
ration graph, followed by distributed learning over the learned
graph. Specifically, to learn the collaboration graph, each agent
requests local models from other agents, and applies a mixture
of each peer model with its own local model to its local
dataset. The performance of this mixed model on the local data
is used as an assessment of that peer’s “usefulness”, and the
agent unilaterally adjusts its links (including the weights) with
other agents based on these assessments. After updating the
collaboration graph, agents train their models collaboratively
through peer-to-peer learning over this graph.

We show that DiPLe has the following advantages: (1)
compared to (centrally coordinated) federated learning algo-
rithms, it achieves personalized learning by selectively com-
municating with agents who have similar or relevant local
datasets, (2) compared to fully connected or arbitrary infor-
mation exchange graphs, it reduces communication overhead,
and (3) outperforms other existing methods for personalized
learning, including by allowing for unilateral information
exchange between agents.

A distinct feature of DiPLe (including compared to prior
work as detailed in Section II) is the directed nature of the
learned collaboration graph. Intuitively, a directed graph can
bring significant benefits to peer-to-peer personalized learning.
There are several factors that influence whether an externally
trained model is beneficial to the local learning of an agent:
the external model’s accuracy, the dataset size from which the
model is obtained, and the difference in the data distribution

between the two agents. As a result, the local models of a
pair of agents may have asymmetric effects on each other. For
example, an agent with a small dataset and low accuracy may
place more weight on the model obtained from a peer with
a large dataset and a high accuracy model, while the peer
will prefer to rely only on its own local model. Our proposed
method for learning directed graphs thus enables collaborative
learning in settings where the local models of a pair of agents
may have different value to each other.

In the remainder of the paper, we first review related work
in Section II. We present our algorithm, DiPLe, in Section III,
and provide analytical results on the generalization error
bounds and convergence of our proposed learning method in
Section IV. We illustrate the performance of DiPLe through
numerical experiments, and discuss its advantages compared
to a number of existing federated learning and personalized
learning algorithms in Section V.

II. RELATED WORK

Decentralized and peer-to-peer learning has been studied in
many prior works, (e.g., [2], [3]). The main difference of our
approach with this literature is in the desired learning outcome:
much of the existing works study peer-to-peer learning algo-
rithms that will lead to consensus on a shared model, while we
are interested in collaborative training of personalized models.

Peer-to-peer personalized learning has been studied much
less extensively; recent work includes [4]–[6]. One key differ-
ence of our work with [4] and [5] is that these prior works
assume the communication graphs to be given and fixed a
priori. In contrast, we study a graph that emerges adaptively
as part of the learning process. To the best of our knowledge,
the only prior work exploring a similar problem of adaptively
learning a collaboration graph is that of Zantedeschi et al. [6].
The algorithm in [6] adjusts the collaboration graph’s edges
based on the similarity between the local models of a pair
of nodes; this leads to an undirected collaboration graph.
By contrast, we propose a different method for identifying
similar agents which ultimately leads to learning a directed
collaboration graph. We show that learning under such directed
collaboration graphs can outperform undirected ones.

Personalized federated learning has received more atten-
tion in recent work. Smith et al. [7] proposed the MOCHA
algorithm for multi-task FL. Fallah et al. [8] proposed a
personalized FL algorithm based on the Model-Agnostic Meta-
Learning (MAML) framework. The works of [9]–[12] propose
a “mixture of experts” approach in which agents maintain
personalization by adopting an appropriately weighted sum of
the globally trained model with their local model. Clustered
FL methods have been proposed in [12]–[15], where agents
are assigned to different clusters based on their similarities,
and learn collaboratively within these clusters.

Among these works, and setting aside the main difference
that unlike these works our method does not need a central
server, [10], [12], [16] are most closely related to our work.
In these works, similar to our proposed method, agents aim to
assess the “usefulness” of either the global model or another

agent’s model based on its performance on their own local
dataset. In particular, the algorithms in [10] and [12] identify
a mixing weight between the global and local models; by
contrast, we do not train a global model, and allow agents to
co-train their models with a subset of other agents. In Zhang et
al. [16]’s algorithm, each agent identifies all neighbors’ models
that outperform its own model on the local dataset, and then
uses this information together with a first-order Taylor series
approximation to build an appropriately weighted mixture
model of these neighbors’ models. In contrast, we identify
the optimal mixing weights by adjusting the weights of a
mixed model using a bisection method. Additionally, while
[16] updates the mixture weights after each round of training,
we freeze the collaboration graph in stage II of DiPLe and
conduct peer-to-peer learning over it.

III. PROBLEM FORMULATION AND ALGORITHM

A. Notation and problem formulation

We consider a set of N agents/clients. Let Di be the
local dataset of agent i ∈ {1, . . . , N}. Each dataset consists
of datapoints ξ = (x, y) with features x ∈ X and labels
y ∈ Y . The prediction models or hypothesis are denoted
by h ∈ H, where H is the hypotheses class. Given a loss
function l : H × X × Y → R≥0, the goal of agent i is
to find a hypothesis h ∈ H that minimizes the expected
loss LDi(h) := E(x,y)∼Di

[l(h(x), y)]. Formally, the local
minimizer of agent i is

hloc,i = argmin
h∈H

LDi
(h) . (1)

Note that hloc,i minimizes the loss of agent i on its local
data distribution, which is in general different across agents.
We assume hypothesis h is linear, and can be equivalently
represented by a parameter vector w ∈ Rd, and use these
interchangeably. We also use fi(w) = LDi(h) to denote the
empirical risk of agent i on its local dataset under a model
with parameters w.

As noted in the introduction, our algorithm learns a directed
and weighted collaboration graph, denoted A ∈ Rn×n, which
determines the information exchange between agents during
peer-to-peer learning. We use αij to denote the i-th row and
j-th column of A. These weights are normalized such that
αii +

∑
j αij = 1 for all i.

The edges in this graph determine the flow of information,
as well as the weights in the collaboratively learned mixture
models: each agent i’s final learned model will be of the form
h̄i = αiihi+

∑
j αijhloc,j , where hloc,j is the local minimizer

model communicated by neighbor j, and hi is the mixture
minimizer chosen by agent i as follows:

hi = argmin
h∈H

LDi(αiih+
∑
j

αijhloc,j) (2)

Our algorithm learns a collaboration graph A such that
the collaboratively learned mixture model h̄i = αiihi +∑

j αijhloc,j over this graph will outperform the indepen-
dently learned local model hloc,i in (1), in terms of generaliza-
tion error and learning loss on agent i’s local data distribution.

B. DiPLe: Directed Personalized Learning
Our proposed algorithm is shown in Algorithm 1. It consists

of two stages: updating the collaboration graph, followed by
peer-to-peer learning over the learned graph. The algorithm
repeats these two stages for R rounds, as detailed below.

At the start of the algorithm, a collaboration graph A is
initialized to a matrix with all entries set to 0.5, and the local
models wloc,i are initialized arbitrarily. Then, at each round
r ∈ [R], the following two-stage process is performed:

Stage I: learning the directed graph: The following steps
are performed by each agent i in parallel:

1) Update the model from wr,−1
loc,i to wr,0

loc,i by each agent
i on its local data Di separately, using E stochastic
gradient descent (SGD) updates. The goal of this training
is to minimize the local loss at agent i, as shown in (1).

2) Based on the current graph, the obtained models from
step 1 are transferred to neighboring agents. Specifically,
if agent i has a directed edge with weight αr−1

ij > 0 to
agent j, it requests the local model wr,0

loc,j of agent j.
3) The graph weights αij are updated using a bisection

method with threshold ϵ to solve the following problem:

min fi((1− αij)w
r,0
loc,i + αijw

r,0
loc,j), (3)

where if αij <
ϵ
2 , it will be set to 0. In words, this is the

optimal mixture between agents i and j’s local models
that would minimize i’s local loss.

These steps lead to an updated collaboration graph Ar,
which is used in the following stage.

Stage II: Collaborative learning on the directed graph:
The agents train their models by repeatedly exchanging up-
dates over collaboration graph Ar for T time steps. At each
time t ∈ [T], the following steps are performed by each agent
i in parallel:

1) Update the local minimizer wr,t
loc,i to wr,t+1

loc,i using one
SGD update to minimize loss on the local dataset Di.

2) Request the local models wr,t+1
loc,j from neighbors j with

whom the graph edge weight αr
ij > 0.

3) The mixture model w̄r,t+1
i = αr

iiw
r,t+1
i +

∑
j α

r
ijw

r,t+1
loc,j

of agent i is updated using one SGD update on the
mixture minimizer model wr,t

i to minimize the mixture
model’s loss on the local data (i.e., with objective
function (2)):

wr,t+1
i = wr,t

i

− ηt∇wi
fi(α

r
iiw

r,t
i +

∑
j

αr
ijw

r,t
loc,j ; ξ

r,t
i), (4)

where ηt is the SGD step size, and ξr,ti is the uniformly
randomly sampled data of agent i at round r iteration t.

At the end of stage II, we select the best performing model
among {wr,t

loc,i, w̄
r,t
i }Tt=1 (all local and mixture models trained

by agent i during stage II), to initialize the agent’s local
minimizer model wr+1,−1

loc,i for the next round. Intuitively,
such update can help agent i by providing valuable model
information from relevant neighbors, and even help this agent
escape local optima.

Algorithm 1: DiPLe
Input: Threshold ϵ for bisection method; step
sizes {ηt} for SGD; max. training epochs R,E, T
Output: Personalized models wi for i ∈ [N]
Initialize: Local models w1,0

loc,i for i ∈ [N];
weight matrix A0 = [0.5]

N,N of collab. graph
for r = 1, ..., R do

Agents i ∈ [N] in parallel do
• E steps SGD to update local model param-

eters from wr,−1
loc,i to wr,0

loc,i

• Request local models wr,0
loc,j from j ∈ [N]

with αr−1
ij > 0

• Update αr
ij by bisection method with thresh-

old ϵ to minimize the empirical risk fi((1−
αr
ij)w

r,0
loc,i + αr

ijw
r,0
loc,j) of agent i

• Normalize weights s.t. αr
ii +

∑
j α

r
ij = 1

for t = 0, ..., T − 1 do
Agents i ∈ [N] in parallel do

• One step SGD to update local model param-
eters from wr,t

loc,i to wr,t+1
loc,i

• Request local models wr,t+1
loc,j from j ∈ [N]

with αr
ij > 0

• Update mixture minimizer wr,t+1
i = wr,t

i −
ηt∇wifi(α

r
iiw

r,t
i +

∑
j α

r
ijw

r,t
loc,j ; ξ

r,t
i)

• Obtain mixture model
w̄r,t+1

i = αr
iiw

r,t+1
i +

∑
j α

r
ijw

r,t+1
loc,j

end
All agents i ∈ [N]:
wr+1,−1

loc,i = argminw∈{wr,t
loc,i,w̄

r,t
i }T

t=1
fi(w)

end
Return wi = wR+1,−1

loc,i , for i ∈ [N]

IV. ANALYTICAL RESULTS

In this section, we show two analytical results for our
proposed algorithm: the convergence of the learned mixture
models, and bounds on its generalization error. For both of
these, we assume a fixed directed collaboration graph, i.e.,
we show these properties for the second stage of DiPLe. We
also discuss how the generalization error is affected by the
“quality” of the learned collaboration graph.

A. Convergence of the learned mixture models

We begin by showing the convergence of the learned
mixture models in stage II of DiPLe over a given graph A.
We make the following assumptions on these functions.

Assumption 1: The variance of SGD is bounded:
E[||∇fi(w

t
loc,i)−∇fi(w

t
loc,i; ξ

t
i)||

2
] ≤ σ2, i ∈ V, t ∈ [T].

Assumption 2: fi(·) are µ-strongly convex: fi(w) ≤ fi(v)+
(w − v)T∇fi(v) +

µ
2 ||w − v||2, for all w,v ∈ Rn, i ∈ V .

Assumption 3: fi(·) are L-Lipschitz continuous: |fi(w) −
fi(v)| ≤ L|w − v|, for all i ∈ V .

Under these assumptions, and with appropriate choice of
step sizes in SGD, we obtain the following convergence result.

Theorem 1: Assume Assumptions 1 to 3 hold. Let the learn-
ing rates be such that η1 ≤ 1 and ηt =

β
t+r , where r > 0 and

β ≤ min{1 + r, 1+r
(α2

ii−
K
n)µ

}, with K := |{j ∈ [N]\{i}| αij >

0}|, and n is chosen to ensure 0 < (α2
ii − K

n)µηt < 1. Then,
w̄t

i in stage II of DiPLe will convergence to w̄i, the optimal
mixed model of agent i, with a rate of O(1t).

A sketch of the proof is given in the Appendix. The full
proof can be found in the supplementary material [17].

B. Generalization error bound of the learned models

We also provide a bound on the generalization error of the
mixed models on each agent’s local data. We present this
for the squared hinge loss in classification tasks, which is
l(h(x), y) = (max{0, 1 − yh(x)})2. In the following, we
define the local empirical risk minimizer of agent i by

ĥloc,i = argmin
h∈H

L̂Di
(h) . (5)

The mixture empirical risk minimizers are defined similarly

ĥi = argmin
h∈H

L̂Di
(αiih+

∑
j

αij ĥloc,j) . (6)

We also use the following definition (from [10]).
Definition 1: Let S be a fixed set of samples. The worst-case

disagreement between two pairs of models is defined as

λH(S) = sup
h,h′∈H

1

|S|
∑

(x,y)∈S

|h(x)− h′(x)| .

The generalization bound on DiPLe’s models is as follows.
Theorem 2: Let H be a hypothesis class with a VC dimen-

sion d. Assume the loss function l is Lipschitz continuous with
a constant L, and bounded in [0, P]. Then, with probability at
least 1− δ there exists a constant C such that the risk of the
mixed model αiiĥi+

∑
j αij ĥloc,j on the local distribution Di

is bounded by

LDi
(αiiĥi +

∑
j

αij ĥloc,j)

≤ Nα2
ii[LDi(hloc,i) + 2C

√
d+log(1/δ)

mi
+ LλH(Si)] (7)

+N
∑
j

α2
ij [L̂Dj (ĥloc,j) + C

√
d+log(1/δ)

mj
+ P ||Di −Dj ||1]

where Si is the training data drawn from Di and mi is its
size, and ||Di −Dj ||1 =

∫
|P(x,y)∼Di

− P(x,y)∼Dj
|dxdy.

The proof is provided in the supplementary material [17].
Intuition and the impact of the quality of the collabora-

tion graph. Intuitively, the bound indicates that if Di and Dj

are similar, then mixing with neighbor j will not increase the
risk at agent i by much. Therefore, the mixing weight αij can
be made larger. Similarly, if the local model of agent j is such
that it has high local empirical risk L̂Dj (ĥloc,j) itself, then a
large mixing weight with this neighbor will increase the risk
at agent i, too. Lastly, it is beneficial to mix with neighbors
who have larger local datasets mj . Our algorithm for learning
the collaboration graph adjusts the weights following similar
logic: it tries to increase the edge weights with peers that have
similar, as well as well-performing, local models.

V. NUMERICAL EXPERIMENTS

A. Experimental setup

Datasets and prediction models. We evaluate DiPLe and
compare it against other algorithms using experiments on
two datasets: EMNIST [18] (which consists of 62 classes of
28 × 28 grayscale images of digits or letters) and CIFAR-10
[19] (which consists of 10 classes of 32 × 32 color images,
including animals and vehicles). We trained a neural network
for every agent in our experiments, with models of CIFAR-10
and EMNIST datasets following [20] and [12], respectively.

Local dataset setup. To obtain non-IID local datasets, we
follow the same procedure as [21] and select each agent’s local
data to consist of only two classes, randomly selected from the
classes in the corresponding dataset.

Baselines. We compare DiPLe against the following:
• Local training, where each agent learns a model inde-

pendently on its local dataset.
• FedAvg [21], in which agents collaborate, with the aid

of a central server, to learn a shared global model.
• FedAvg+non-iid [22], a variant of FedAvg designed to

improve over it when local datasets are non-IID.
• APFL [10] and FedAvg+Mapper [12], two personalized

learning algorithms which learn an optimal mixture be-
tween a global model and each agent’s local model.

For each of these, we perform a hyperparameter sweep and
choose the one that performs best on the validation set to
compare against (additional details are given in [17]). For
DiPLe, we choose E = 5, T = 5, R = 20, and ϵ = 0.05.

B. Experimental results and discussion

Table I compares DiPLe’s learning accuracy on the local
dataset against four baselines, on two datasets, and for N = 15
and N = 100 agents. In the case of 15 agents, stage I of
DiPLe learns a directed graph on all agents. In the case
of 100 agents, each agent in DiPLe randomly samples 20
agents to learn a new collaboration graph for that round.
From the results in Table I, we can see that our algorithm
outperforms all baselines on both datasets and agent sizes. It
is also interesting to note that DiPLe surpasses local training
more when N = 100 in EMNIST, and in CIFAR-10 compared
to EMNIST; this is because in these settings, given our method
of generating local non-IID datasets and the number of classes
in each dataset, it is more likely that agents will encounter a
peer with similar local data to collaborate with.

Figure 1 further illustrates the convergence speed of DiPLe
(vs. FedAvg and APFL) in an experiment on the CIFAR-10
dataset with 8 agents. This figure implies that DiPLe can
identify “useful” peers early on, and refine the performance
of the learned model through additional training afterwards.

Figure 2 and Table II compare the performance of DiPLe
(which learns over directed graphs) and learning over a
similarity-based undirected graph. The four agents in this
experiment are divided into two groups, and the datasets for
the two agents in the same group are IID (with 2 classes
selected randomly from CIFAR-10), but the datasets between

TABLE I
COMPARISON OF LOCAL ACCURACY (PERSONALIZATION)

Algorithm EMNIST CIFAR-10
15 agents 100 agents 15 agents 100 agents

Local Training 99.70% 94.99% 87.20% 82.09%
FedAvg 90.84% 70.51% 62.76% 54.98%

FedAvg+non-iid 81.33% 71.23% 56.13% 52.72%
FedAvg+Mapper 98.04% 96.62% 65.47% 65.13%

APFL 97.22% 96.30% 78.01% 76.69%
DiPLe 99.76% 98.53% 92.33% 84.88%

Fig. 1. Validation accuracy vs. training epochs (8 agents’ avg. over 10 runs)

the two groups are non-IID (the 2 sampled classes are in
general different between groups). Learning results on the
undirected graph are based on running FedAvg between the
pair of agents with IID local data (this is akin to clustered FL).
We observe that while DiPLe learns more slowly (due to the
time spent learning the best collaboration graph), the average
accuracy obtained by DiPLe is eventually higher than that
learned on the undirected graph. We also observe that agents 2
and 3 have benefited from being connected with agents 0 and 1
(and 0 from connecting to 2 and 3), even though their datasets
are not similar. Finally, we note that agents are grouped in
the undirected graph assuming their datasets are known to be
similar. In contrast, DiPLe does not need to know the data
distribution in advance.

VI. CONCLUSION

To enable collaborative learning of personalized models
when local datasets are heterogeneous, we proposed DiPLe: a
fully decentralized peer-to-peer learning approach that trains
personalized local models by collaborating only with “simi-
lar” agents. We provided analytical characterizations for our
learned models’ convergence and generalization error. Experi-
mental results on EMNIST and CIFAR-10 datasets highlighted
the performance of DiPLe. In particular, the experiments
show that DiPLe guides agents to decrease their collaboration
with some agents while increasing their interactions with
others, thus avoiding negative interference from models of
agents with different data/tasks, and outperforming federated
learning, independent local training, and other existing person-
alized learning methods, in learning personalized models.

The main directions of extending our work include safe-
guarding DiPLe against potential adversarial/privacy attacks,
and reducing its communication costs. In particular, our (dis-

TABLE II
LOCAL ACCURACY (PERSONALIZATION), CIFAR-10 NON-IID DATASETS

Algorithm Agent Number Average
0 1 2 3

Undirected 85.42% 88.33% 87.50 % 87.58% 87.21%
DiPLe 86.87% 86.13% 88.53% 87.60% 87.28%

Fig. 2. Validation accuracy vs. training epochs (4 agents’ avg. over 10 runs)

tributed) algorithm inevitably incurs higher communication
costs than (centralized) FL algorithms (e.g, FedAvg, APFL)
by removing the central server. Nonetheless, the main purpose
of our work is to achieve personalized learning, which as we
show, is not achievable by these lower communication algo-
rithms. That said, further reducing DiPLe’s communication
costs would be of interest to make it more scalable.

APPENDIX

We present a proof sketch for Theorem 1. Our proof is
similar to those of [10] and [22]. We first show that the mixture
model of i is updated as follows:

w̄t+1
i = w̄t

i − ηtα
2
ii∇fi(w̄

t
i ; ξ

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j ; ξ

t
j)

Using this, we can bound the reduction in the distance of each
update with the optimal mixture model w̄i as follows:

E[||w̄t+1
i − w̄i||

2
] ≤ E[||w̄t

i − w̄i||
2
] + ηt

2σ2(α2
ii + 1− αii)

+ η2tE[||α2
ii∇fi(w̄

t
i) +

∑
j

αij∇fj(w
t
loc,j)||

2
]

−2ηtαii
2E[⟨∇fi(w̄

t
i), w̄

t
i − w̄i⟩]

−2ηt
∑
j

αijE[⟨∇fj(w
t
loc,j), w̄

t
i − w̄i⟩]

The remainder of the proof proceeds by upperbounding each
of the three expected values on the right-hand side of the above
inequality (these bounds require the Lipschitz continuity and
µ-strong convexity of fi). This leads to

E[||w̄t+1
i − w̄i||

2
]

≤ (1− (α2
ii −

K

n
)µηt)E[||w̄t+1

i − w̄i||
2
] +Bη2t

where B is a constant that depends on the graph edge weights,
among other things. Lastly, we use the above together with the
conditions on the stepsizes ηt to show that E[||w̄t

i − w̄i||
2
] ≤

v
t+r through induction, completing the proof.

REFERENCES

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[2] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” arXiv preprint
arXiv:1705.09056, 2017.

[3] M. R. Behera, S. Upadhyay, S. Shetty, and R. den Otter, “Federated
learning using peer-to-peer network for decentralized orchestration of
model weights,” 2021.

[4] I. Almeida and J. Xavier, “Djam: Distributed jacobi asynchronous
method for learning personal models,” IEEE Signal Processing Letters,
vol. 25, no. 9, pp. 1389–1392, 2018.

[5] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized col-
laborative learning of personalized models over networks,” in Artificial
Intelligence and Statistics, pp. 509–517, PMLR, 2017.

[6] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint
learning of personalized models and collaboration graphs,” in Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 864–874,
PMLR, 2020.

[7] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” arXiv preprint arXiv:1705.10467, 2017.

[8] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” arXiv preprint arXiv:2002.07948,
2020.

[9] E. L. Zec, O. Mogren, J. Martinsson, L. R. Sütfeld, and D. Gill-
blad, “Federated learning using a mixture of experts,” arXiv preprint
arXiv:2010.02056, 2020.

[10] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” arXiv preprint arXiv:2003.13461, 2020.

[11] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” arXiv preprint arXiv:2002.05516, 2020.

[12] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for
personalization with applications to federated learning,” arXiv preprint
arXiv:2002.10619, 2020.

[13] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 8, pp. 3710–3722, 2020.

[14] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-
work for clustered federated learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 19586–19597, 2020.

[15] M. Nafea, E. Shin, and A. Yener, “Proportional fair clustered federated
learning,” in 2022 IEEE International Symposium on Information Theory
(ISIT), pp. 2022–2027, 2022.

[16] M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez, “Person-
alized federated learning with first order model optimization,” arXiv
preprint arXiv:2012.08565, 2020.

[17] X. Zheng, P. Naghizadeh, and A. Yener, “Diple: Learning directed
collaboration graphs for peer-to-peer personalized learning.” https:
//drive.google.com/file/d/1EtpV0psbY98TYfjA0avEh0HdJvr-M6Vc/
view?usp=sharing, 2022.

[18] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN), pp. 2921–2926, IEEE, 2017.

[19] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[20] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with Moreau envelopes,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21394–21405, 2020.

[21] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR,
2017.

[22] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[23] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
International Conference on Machine Learning, pp. 4615–4625, PMLR,
2019.

SUPPLEMENTARY MATERIAL FOR
“DiPLe: LEARNING DIRECTED COLLABORATION GRAPHS FOR PEER-TO-PEER PERSONALIZED LEARNING”

A. Proof of Theorem 1

Our proof is similar to those of [10] and [22].
We first note that the stochastic gradient of agent i’s local empirical loss with respect to its local mixture model is given by

∇wifi(w̄
t
i ; ξ

t
i) = ∇wifi(αiiw

t
i +

∑
j

αijw
t
loc,j ; ξ

t
i)

= αii∇fi(αiiw
t
i +

∑
j

αijw
t
loc,j ; ξ

t
i)

= αii∇fi(w̄
t
i ; ξ

t
i) (8)

Using this, the mixed model of agent i is updated as follows:

w̄t+1
i = αiiw

t+1
i +

∑
j

αijw
t+1
loc,j

= αii(w
t
i − ηtαii∇fi(w̄

t
i ; ξ

t
i)) +

∑
j

αij(w
t
loc,j − ηt∇fj(w

t
loc,j ; ξ

t
j))

= αiiw
t
i +

∑
j

αijw
t
loc,j − ηtα

2
ii∇fi(w̄

t
i ; ξ

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j ; ξ

t
j)

= w̄t
i − ηtα

2
ii∇fi(w̄

t
i ; ξ

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j ; ξ

t
j) (9)

Based on this, we assess the norm 2 distance of the learned mixed model w̄t+1
i at time t + 1 from the optimal mixture

model w̄i:

E[||w̄t+1
i − w̄i||

2
]

= E[||w̄t
i − w̄i − ηtα

2
ii∇fi(w̄

t
i ; ξ

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j ; ξ

t
j)||

2
]

= E[||w̄t
i − w̄i − ηtα

2
ii∇fi(w̄

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j)||

2
]

+η2tE[||α2
ii(∇fi(w̄

t
i)−∇fi(w̄

t
i ; ξ

t
i)) +

∑
j

αij(∇fj(w
t
loc,j)−∇fj(w

t
loc,j ; ξ

t
j))||

2
]

≤ E[||w̄t
i − w̄i − ηtα

2
ii∇fi(w̄

t
i)− ηt

∑
j

αij∇fj(w
t
loc,j)||

2
] + η2t σ

2(α2
ii + 1− αii) (10)

= E[||w̄t
i − w̄i||

2
] + η2t E[||α2

ii∇fi(w̄
t
i) +

∑
j

αij∇fj(w
t
loc,j)||

2
]︸ ︷︷ ︸

T1

−2ηtαii
2E[⟨∇fi(w̄

t
i), w̄

t
i − w̄i⟩]︸ ︷︷ ︸

T2

−2ηt
∑
j

αijE[⟨∇fj(w
t
loc,j), w̄

t
i − w̄i⟩]︸ ︷︷ ︸

T3

+ηt
2σ2(α2

ii + 1− αii) (11)

Here, inequality (10) uses Assumption 1 (that the variance of stochastic gradient of each agent i is bounded by σ2).

First, we bound the term T1:

E[||α2
ii∇fi(w̄

t
i) +

∑
j

αij∇fj(w
t
loc,j)||

2
]

≤ 2α4
iiE[||∇fi(w̄

t
i)||

2
] + 2E[||

∑
j

αij∇fj(w
t
loc,j)||

2
] (12)

≤ 2α4
iiL

2 + 2L2
∑
j

α2
ij (13)

= 2L2(α4
ii +

∑
j

α2
ij) (14)

The inequality (12) uses the Jensen inequality and the inequality (13) comes from Assumption 3 that fi(·) are L-Lipschitz
continuous, and the triangle inequality.

We also bound T2 using Assumption 2 that fi(·) is µ-strongly convex:

− 2ηtαii
2E[⟨∇fi(w̄

t
i), w̄

t
i − w̄i⟩]

≤ −2ηtαii
2(E[fi(w̄t

i)] +
µ

2
E[||w̄t

i − w̄i||
2
]− fi(w̄i))

= −µηtα
2
iiE[||w̄t

i − w̄i||
2
]− 2ηtα

2
iiE[fi(w̄t

i)− fi(w̄i)] (15)

Finally, we bound T3 using the Cauchy-Schwarz inequality and AM-GM inequality:

− 2ηt
∑
j

αijE[⟨∇fj(w
t
loc,j), w̄

t
i − w̄i⟩]

≤ ηt
∑
j

αij(
nαij

µ
E[||∇fj(w

t
loc,j)||

2
] +

µ

nαij
E[||w̄t

i − w̄i||
2
]) (16)

≤
n
∑

j α
2
ij

µ
ηtL+

Kµηt
n

E[||w̄t
i − w̄i||

2
] (17)

The inequality (16) comes form Cauchy-Schwarz inequality and AM-GM inequality. The inequality (17) comes from
Assumption 3 that fi(·) are L-Lipschitz continuous.

Assuming a diminishing step-size ηt =
β

t+r , r > 0 and η1 ≤ 1, we plug back (14), (15), and (17) in (11), and get:

E[||w̄t+1
i − w̄i||

2
]

≤ E[||w̄t
i − w̄i||

2
] + ηt

2(2L2(α4
ii +

∑
j

α2
ij))− µηtα

2
iiE[||w̄t

i − w̄i||
2
]

− 2ηtα
2
ii E[fi(w̄t

i)− fi(w̄i)]︸ ︷︷ ︸
≥0

+
n
∑

j α
2
ij

µ
ηtL+

Kµηt
n

E[||w̄t
i − w̄i||

2
]

+ ηt
2σ2(α2

ii + 1− αii)

≤ (1− µα2
iiηt +

Kµηt
n

)E[||w̄t
i − w̄i||

2
]

+ηt
2 (2L2(α4

ii +
∑
j

α2
ij) +

n
∑

j α
2
ij

µ
L+ σ2(α2

ii + 1− αii︸ ︷︷ ︸
B

))

= (1− (α2
ii −

K

n
)µηt)E[||w̄t+1

i − w̄i||
2
] +Bη2t (18)

We follow the proof of Theorem 1 of [22] in following parts. Denote E[||w̄t
i − w̄i||

2
] as △t. For some β ≤ min{1 +

r, 1+r
(α2

ii−
K
n)µ

} and v = max { β2B
(α2

ii−
K
n)βµ−1

, (r + 1)△1}, which ensure △1 ≤ v
r+1 and [β2B

(t+r)2 − (α2
ii−K

n)βµ−1

(t+r)2 v] ≤ 0, we will
prove △t ≤ v

t+r by induction method.

If △t <
v

r+t , we can prove △t+1 < v
r+(t+1) as follows:

△t+1 ≤ (1− (α2
ii −

K

n
)µηt))△t

≤ (1− (α2
ii −

K

n
)
µβ

t+ r
)

v

t+ r
+

β2B

(t+ r)2

=
t+ r − 1

(t+ r)2
v + [

β2B

(t+ r)2
−

(α2
ii − K

n)βµ− 1

(t+ r)2
v]

≤ v

r + (t+ 1)
(19)

because we know △1 < v
r+1 from the definition of v, the △t ≤ v

t+r is proved.

B. Proof of Theorem 2

Our proof is similar to that of [10], adapted to our peer-to-peer learning setting. Starting from the risk LDi(αiiĥi +∑
j αij ĥloc,j), we have

LDi
(αiiĥi +

∑
j

αij ĥloc,j)

= E(x,y)∼Di
[(max{1− y(αiiĥi +

∑
j

αij ĥloc,j)})2]

= E(x,y)∼Di
[(αii max{1− yĥi}+

∑
j

αij max{1− yĥloc,j})2]

≤ Nα2
iiE(x,y)∼Di

[(max{1− yĥi})2] +N
∑
j

α2
ijE(x,y)∼Di

[(max{1− yĥloc,j})2]

= Nα2
iiLDi

(ĥi) +N
∑
j

α2
ijLDi

(ĥloc,j) (20)

Next, using the uniform VC dimension error bound over H [23], we know

|LDi
(h)− L̂Di

(h)| ≤ C

√
d+ log(1/δ)

mi
, ∀h ∈ H . (21)

with probability at least 1− δ.
Then, following techniques similar to those in [10], we can get

LDi
(ĥi) ≤ LDi

(hloc,i) + 2C

√
d+ log(1/δ)

mi
+ L̂Di

(ĥi)− L̂Di
(ĥloc,i)

≤ LDi
(hloc,i) + 2C

√
d+ log(1/δ)

mi
+ LλH(Si) . (22)

Lastly, from Lemma 1 in [10] we know that

LD(h) ≤ LD′(h) + P ||D −D′||1 . (23)

This in turn means that

LDi
(ĥloc,j) ≤ LDj

(ĥloc,j) + P ||Di −Dj ||1 . (24)

Using (21), we also have

LDj
(ĥloc,j) ≤ L̂Dj

(ĥloc,j) + C

√
d+ log(1/δ)

mj
(25)

Substituting equations (22), (24), and (25), in (20), we get:

LDi(αiiĥi +
∑
j

αij ĥloc,j) (26)

≤ Nα2
ii

(
LDi

(hloc,i) + 2C

√
d+ log(1/δ)

mi
+ LλH(Si)

)
+N

∑
j

α2
ij

(
L̂Dj

(ĥloc,j) + C

√
d+ log(1/δ)

mj
+ P ||Di −Dj ||1

)
(27)

This completes the proof.

C. Additional details on the experimental setup

The hyperparameters we chose and the swept parameter sets are as follows.
• Local training: client num epochs=1, client step size=0.01. The step size is chosen from {1, 0.3, 0.1, 0.05, 0.03, 0.01}.
• FedAvg [21]: client num epochs=1, client step size=0.03. The step size is chosen from {1, 0.3, 0.1, 0.05, 0.03, 0.01}.
• FedAvg+non-iid [22]: client num epochs=1, client step size=ηt = η0

t+1 , and η0 = 0.03. η0 is chosen from
{1, 0.3, 0.1, 0.05, 0.03, 0.01}.

• FedAvg+Mapper [12]: client num epochs=1, client step size=0.03. Sever num epochs=1, sever step size=0.05. The client
and sever step size are chosen from {1, 0.3, 0.1, 0.05, 0.03, 0.01}.

• APFL [10]: client num epochs=4, client step size=0.01. Sever num epochs=6, sever step size=0.01. The client and sever
step size are chosen from {1, 0.3, 0.1, 0.05, 0.03, 0.01}, α = 0.25.

• DiPLe: client num epochs=1, client step size=0.03. The step size is chosen from {1, 0.3, 0.1, 0.05, 0.03, 0.01}, E = 5, T
= 5, R = 20.

D. Additional experiments on DiPLe

Table III shows the results for N = 4 agents in the non-IID setting of the CIFAR-10 dataset. We note that while the accuracy
of DiPLe is lower than independent local training for agent 0, the average personalized accuracy and the accuracy on the
other three agents is higher with DiPLe than both federated learning (fully connected graph) and local training.

TABLE III
LOCAL ACCURACY (PERSONALIZATION), CIFAR-10 NON-IID DATASETS

Algorithm Agent Number Average
0 1 2 3

Fully connected 59.0% 53.0% 63.5% 54.0% 57.38%
Local Training 90.5% 76.00% 82.00% 84.00% 83.13%

DiPLe 89.50% 79.00% 87.50% 86.50% 85.63%

Table IV also shows the results for N = 4 agents in the non-IID setting of the CIFAR-10 dataset. In this experiment,
the four agents belong to two different groups, and the data selection of the four agents is the same as Table II. Unlike the
experiments in Table II, there are a models transfer between these two groups. When two groups communicate with each other,
the weights of models passed to each group are the same, which means a symmetric matrix can represent the weights of the
models between agents. In contrast, matrix A in DiPLe is asymmetric. We chose 0.3 and 0.6 as the weights between groups
in this experiment. We found that except that on agent 1 the result of DiPLe is slightly worse than the undirected graph,
DiPLe surpasses the undirected graph on the other three agents and the average.

TABLE IV
LOCAL ACCURACY (PERSONALIZATION), CIFAR-10 NON-IID DATASETS

Algorithm Agent Number Average
0 1 2 3

Undirected (weight between group = 0.6) 82.50% 85.45% 86.90% 78.55% 83.29%
Undirected (weight between group = 0.3) 82.15% 83.40% 86.90% 76.90% 82.34%

DiPLe 84.27% 82.20% 88.53% 81.60% 84.15%

