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Abstract— As machine learning algorithms increasingly influ-
ence crucial decisions in areas like loan approvals and hiring,
understanding human strategic behavior in response to these
systems becomes vital. We explore strategic manipulation and
improvement actions by individuals facing algorithmic deci-
sions, the algorithm designer’s role in shaping these strategic
responses, and the fairness implications. We formulate these
interactions as a Stackelberg game, where a firm deploys a
(fair) classifier, and individuals strategically respond. Unlike
previous research, our model incorporates both different costs
and stochastic efficacy for manipulation and improvement. The
analysis reveals different potential classes of agent responses,
and characterizes optimal classifiers. Based on these, we high-
light the impact of the firm’s anticipation of strategic behavior,
identifying cases when a (fair) strategic policy can motivate
improvement while reducing manipulation.

I. INTRODUCTION

Machine learning (ML) algorithms have come to play
a pivotal role in guiding decision making in many appli-
cation areas, including banking, hiring, social media, and
resource allocation. While the use of ML-driven systems
can enhance efficiency, it can also drive the humans who
are subject to algorithmic decisions to adjust their behavior
accordingly. Examples include Uber drivers coordinating
their behavior in response to its surge pricing algorithm
[1], applicants selecting keywords and formatting to pass
automated resume screening [2], and Facebook [3] users
adjusting their posting and content interaction choices in
response to the platforms’ curation algorithms. These can
be viewed as strategic responses by rational human subjects
in these systems, motivating a game-theoretical analysis of
learning algorithms with human in the loop.

Recent research has considered settings where agents
strategically manipulate observable data (features) to secure
favorable outcomes, engaging in what is known as strategic
manipulation [4]–[7]. However, the alternative option of
strategic improvement, wherein agents invest genuine effort
to modify their true qualification states and attain favorable
results, remains less studied [8]–[12]; further, the fairness
implications of the availability of both types of strategic
behavior remains unexplored.

This paper addresses this gap by analyzing a binary
classification problem where agents face a choice between
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manipulation (solely changing their features) and improve-
ment (investing effort which leads to changes in both their
features and true qualification states). Our work differs from
prior literature in that our model incorporates not only
distinct costs for these strategic actions, but also different
(stochastic) efficacy for them, and further has both costs
and efficacy varying across demographic groups. This allows
us to unravel the effects of these differences on agents’
decisions, providing insights that firms can leverage to adapt
their algorithms in a way that encourages improvements
while discouraging manipulations.

Formulating the problem as a Stackelberg game, the firm
first deploys a (fair) classifier, and then agents strategically
respond to it. We characterize the Stackelberg game equilib-
rium under the assumption that improvement is more costly
than manipulation, but that it is more effective at advancing
agents’ chances of receiving a favorable decision (we do
the latter by assuming that the transition probabilities under
manipulation first-order stochastically dominate those under
improvement). We show how the firm’s knowledge of the
strategic behavior impacts its choice of a classifier, as well
as agents’ strategic choices and outcomes across different
qualification states and demographic groups.

Specifically, we show that anticipating strategic behavior
allows the firm to not only curb undesired manipulation (as
also found in prior work) but can also incentivize agents
to opt for improvement decisions instead. Notably, we find
that when a group has high qualification rates, the firm
will make its selection algorithm more “strict”, incentivizing
improvement by unqualified agents (driving them to improve
both their qualification states and observable features), while
still leaving the manipulation option open to qualified agents
(who do not have sufficiently high observable features to be
selected otherwise, but whose acceptance benefits the firm).
We also highlight how a firm can leverage these strategic
responses while enhancing algorithmic fairness.

II. PROBLEM SETTING AND PRELIMINARIES

We consider a Stackelberg game where the firm (algorithm
designer) first announces a classifier, following which the
agents respond strategically. We detail the agents’ and the
firm characteristics, their actions, and their utilities, in this
section. The notation is summarized in Table I.

a) The agents: Consider a population of agents with
two types of features: sensitive features that divide the
population into two demographic groups S ∈ {a,b} (e.g.,
race, gender), and an observable feature x ∈ R≥0 also used



TABLE I: Summary of main notation.

Notation Description
s ∈ {a,b} Demographic group membership.
ns ∈ [0,1] Fraction of agents in group s.
x ∈ R≥0 Agents’ observable feature pre-strategic behavior.
y ∈ {0,1} Agents’ unobservable, true qualification state pre-

strategic behavior.
αs ∈ [0,1] The qualification rate in group s pre-strategic behaviour.
Gy

s(x) Feature distribution (pdf) for individuals with qualifi-
cation y from group s pre-strategic behavior.

x̂, ŷ,
α̂s, Ĝ

y
s(x)

Agents’ feature, qualification state, group qualification
rate, and feature distribution, post-strategic behavior.

w ∈
{M, I,N}

Agents’ strategic actions. Includes manipulation (M),
improvement (I), and doing nothing (N).

Cw,s Cost of strategic action w to an agent from group s.
τ

y
w,s(b),

Ty
w,s(b)

The pdf and CDF of the distribution of the boost b from
action w for an agent from group s with true label y.

by
w,s/b̄y

w,s Minimum/maximum of boost distribution when taking
action w for group s agents.

θs The firm’s decision threshold for group s.
u+/u− The firm’s benefit/cost from true/false positives.

Iy
s/My

s/Ny
s Set of agents from group s with qualification y who opt

for improvement/manipulation/doing nothing.

by the firm for making decisions (e.g., exam score, credit
score). Let ns be the fraction of agents in group s.

Each agent has a true hidden label or qualification state,
denoted Y ∈ {0,1}, with Y = 1 denoting a qualified agent
and Y = 0 denoting an unqualified agent. Let αs := P(Y =
1|S = s) denote the qualification rate in group s. In addition,
let Gy

s(x) := P(X = x|Y = y,S = s) denote the probability
density function (pdf) of the distribution of the features for
individuals with qualification state y from group s. We make
the following assumption on the feature distributions.

Assumption 1: The feature distributions Gy
s(x) are con-

tinuous, and satisfy the strict monotone likelihood ratio
property: G1

s (x)
G0

s (x)
is strictly increasing in x ∈ R≥0.

In words, this entails that as an agent’s feature increases, the
likelihood that the agent is qualified increases as well.

b) The firm: A firm makes decisions on these agents
based on their observable features x and their group mem-
berships s. The decision is binary, denoted d ∈ {0,1}, where
d = 1 represents acceptance and d = 0 represents rejection.
This decision is determined by a group-dependent binary
classifier πs(x) = P(D = 1|X = x,S = s). We assume that this
is a threshold policy, such that if x ≥ θs the probability to be
accepted is πs(x) = 1, and is zero otherwise.1

c) Agents’ strategic actions: After the policy is an-
nounced by the firm, agents have the option to behave
strategically to improve their chances of receiving favorable
outcomes. This is done by choosing one of the strategic
actions w ∈ {M, I,N}, with M denoting manipulation, I
denoting improvement, and N denoting doing nothing.

Taking these actions may impact the agents’ features
and/or labels. We use X and Y to denote the pre-strategic
feature and label (before an action w is taken), and X̂
and Ŷ to denote the post-strategic ones. In particular, both
qualified and unqualified agents (y = 1 and y = 0) can opt to
manipulate (w = M) by changing their feature, X = x → X̂ =

1[13] shows that threshold policies are optimal under mild assumptions.

x̂, where x̂ is some new feature, while the true label remains
the same Y = Ŷ = y. Alternatively, both types of agents can
choose to improve (w = I) by changing their feature x → x̂,
as well as the true label Y = y → Ŷ = 1. Agents who opt for
w = N maintain their feature X̂ = X = x and label Ŷ =Y = y.
The firm will observe the agents’ post-strategic features x̂
when making its decision. We let α̂s and Ĝy

s(x) denote the
post-strategic population statistics after these changes have
happened as a result of agents’ selected strategic actions.

In addition to differing in their impacts on changes in
features and/or labels, the actions differ in two aspects: their
cost and their efficacy. First, each action requires exerting
effort and comes at a certain group-dependent (constant)
cost Cw,s ∈ [0,1), w ∈ {M, I,N},s ∈ {a,b}. In addition, we
assume all actions lead to a (weak) increase in the feature
(i.e., we assume that x̂ ≥ x), but that this increase in feature is
different across actions: the probability that the feature x of a
qualified/unqualified individual from a group s increases by
bw after opting for action w is distributed according to a boost
distribution with pdf τ

y
w,s(b) :=P(X̂ = x+b|X = x,Y = y,W =

w,S = s). These boost distributions determine the efficacy of
the action. Let {by

w,s, b̄
y
w,s} denote the minimum and maxi-

mum boost under action w, and Ty
w,s(b) : [by

w,s, b̄
y
w,s]→ [0,1]

denote the CDF of the boost function.
We let CN,s = 0 and τ

y
N,s(0) = 1, meaning that the “do

nothing” action has zero cost and no impact on changing
the agent feature. The two remaining actions, M and I, can
differ in cost and efficacy. We conduct our analysis under
the following assumption.2

Assumption 2: Improvement is more costly than manip-
ulation (i.e., CI,s ≥ CM,s), and the improvement boost dis-
tribution first-order stochastically dominates (FOSD) that of
manipulation (i.e., Ty

M,s(b)≥ Ty
I,s(b)).

In words, an action dominating another means that it “gets
the agent further”, in that it has a higher probability of
increasing the agent’s feature from x to a feature greater or
equal to x̂ = x+ b. Assumption 2 gives rise to the conflict
between the two actions: manipulation is cheaper, while
improvement is more effective in advancing the agent.

d) Firm’s utility: The firm’s goal is to find the optimal
policy that maximizes its expected utility by correctly classi-
fying the agents. The firm receives benefit u+ from accepting
qualified individuals, and incurs penalty u− from accepting
unqualified individuals. The firm’s goal may alternatively be
finding the fair optimal policy by also imposing a fairness
constraint C on its decision problem.

Formally, let U(θa,θb) represent the firm’s total utility
given the decision thresholds; the firm’s expected utility is:

E[U(θa,θb)] = ∑
s

ns

∫
θs

[G1
s (x)αsu+−G0

s (x)(1−αs)u−]dx .

(1)

The firm’s strategic (fair) optimization problem is to

2There are three other scenarios: one can be recovered by interchanging
the indexes M and I. The other two are perhaps less interesting, as one of
the actions is more beneficial in both cost and efficacy in those cases.



choose the decision thresholds θa and θb as follows:

max
θa,θb

E[U(θa,θb)] , s.t. C f
a (θa) = C f

b (θb). (2)

The fairness constraint here, donated by f , can be, e.g.,
Equality of Opportunity (C EOP

s =
∫

x≥θs
G1

s (x)dx) or Demo-
graphic Parity (C DP

s =
∫

x≥θs
(G1

s (x)αs +G0
s (x)(1−αs))dx).

When agents are strategic and this is known to the firm, the
agents’ statistics in (2) will be replaced by the post-strategic
values, as characterized shortly in Section III.

e) Agents’ utility: In general, each agent’s strategic
choice among the three available actions depends on its
budget B, the cost of effort Cw,s, the efficacy of the selected
action τ

y
ws, and the firm’s deployed policy θs. For simplicity,

we assume the same budget B for all agents, and assume this
budget is sufficiently high so that all agents can afford both
of the costly actions. Then, the choice among the actions
depends on the relative benefit vs. the cost of each action.

Formally, an agent chooses to incur the cost Cw,s of action
w if and only if it increases the probability that the agent is
accepted by the firm. For an agent from group s with feature
x and qualification y, the benefit from strategic action w is

Bw,s(x,y) := P(D = 1|X = x,Y = y,W = w,S = s)

−P(D = 1|X = x,Y = y,W = N,S = s). (3)

Note that the efficacy of the selected action τ
y
w,s, and the

firm’s deployed policy θs, affect this benefit. The agent’s
utility will be us(x,y,w) := Bw,s(x,y)−Cw,s. Note that the
utility of action N is zero, capturing agents’ outside option.

III. AGENTS’ STRATEGIC BEHAVIOR

We begin by characterizing agents’ best responses to a
given classifier. Consider an agent from group s with feature
x and label y, facing decision threshold θs. Denote the agent’s
best-response by w∗

s (x,y) := argmaxw∈{M,I,N} us(x,y,w). We
will show that for any given y and s, the feature space
x can be partitioned into disjoint regions determining the
agents’ best-reponse, with the boundaries of these regions
determined by the points where agents become indifferent
between pairs of actions. Specifically, we define a set of
indifference features based on the cost-efficacy trade-off of
the actions available to the agents.

Definition 1: Given efficacy CDFs Ty
w,s, with inverse

CDFs (Ty
w,s)

−1, and costs Cw,s, define:
• Opt in features:

oy
w,s = max{0,θs − (Ty

w,s)
−1(1−Cw,s)}, for w ∈ {M, I}.

• Flip decision feature: fy
s ∈ [θ − b̄M,θ −bI ] satisfying

Ty
M,s(θs − fy

s)−Ty
I,s(θs − fy

s) =CI,s −CM,s,
if a solution exists; zero otherwise.

• Risk taker feature:
ry

s := max{0,θs − (Ty
M,s)

−1(CI,s −CM,s)}.
Intuitively, as shown formally in the proof of Proposition 1,
these features can be interpreted as follows: The opt in
features determine the first feature at which the agents benefit
from opting for an action M or I as opposed to doing nothing;
the flip decision feature is the feature at which the cost-
efficacy trade-off of the M and I actions are equalized so

that the agent will flip between its decisions around this
point; and the risk taker feature is the feature at which the
agent opts for an uncertain admission under M over a certain
admission under I given M’s relatively lower cost.

With the above, we are ready to characterize the agents’
optimal best responses to a given decision threshold θs.

Proposition 1: Under Assumption 2, if fy
s is unique, the

agents’ optimal response w∗
s (x,y) to a given decision thresh-

old θs will be one of the three types outlined in Table II.

TABLE II: Agents’ best responses (Proposition 1).

Type Condition Range : w∗
s (x,y)

Type 1 fy
s ≤ oy

I,s ≤ oy
M,s ≤ ry

s
* [0,oy

I,s) : N, [oy
I,s,r

y
s) : I, [ry

s ,θs) :
M, [θs,∞) : N †

Type 2 oy
M,s ≤ oy

I,s ≤ fy
s [0,oy

M,s) : N, [oy
M,s, f

y
s) : M,

[fy
s ,ry

s) : I, [ry
s ,θs) : M, [θs,∞) : N

Type 3 fy
s ≤ oy

M,s ≤ oy
I,s [0,oy

M,s) : N, [oy
M,s,θs) : M,

[θs,∞) : N
* Or oy

I,s ≤ fy
s ≤ oy

M,s ≤ ry
s .

† [0,oy
I,s) : N, [oy

I,s, f
y
s) : I, [fy

s ,θs) : M, [θs,∞) : N.

These three types of best-responses are illustrated in
Figure 1. In particular, note that in all types of equilibrium,
agents who are close to the decision threshold opt to be
risk takers, choosing uncertain but cheap manipulation over
certain but costly improvement. Interestingly, we posit that
this may be consistent with gaming behavior observed in
education settings: students committing academic dishonesty
typically have higher GPAs [14].

We also note that the type of equilibrium is determined
solely by the relative cost and efficacy of the manipulation
and improvement actions; the choice of the classifier θs
changes the indifference points where agents opt for each
action, but not the type of equilibrium. We provide additional
intuition for this below.

A. Illustration: uniform boost distributions

To further illustrate the intuition behind the types of best-
responses identified in Proposition 1, we consider uniform
boost distributions τ

y
w,s. It is straightforward to verify that the

three possible equilibria of Proposition 1 can be obtained by
varying improvement cost CI relative to manipulation cost
CM . Specifically, consider b̄y

M −by
M ≥ b̄y

I −by
I . Then:

• Low improvement cost: If CM ≤ CI ≤
b̄y

M−by
M

b̄y
I−by

I
CM +

b̄y
I−b̄y

M
b̄y

I−by
I

, the best-response is of Type 1 in Proposition 1.
In this case, the improvement cost is relatively low, so
coupled with its higher efficacy, agents find it beneficial
to opt for improvement before manipulation becomes
beneficial. Ultimately, however, the lower manipulation
cost leads agents to change their decision closer to the
threshold, once uncertainties about receiving a positive
outcome are low enough.

• Moderate improvement cost: If b̄y
M−by

M
b̄y

I−by
I

CM +
b̄y

I−b̄y
M

b̄y
I−by

I
≤

CI ≤ CM +
by

I−by
M

b̄y
M−by

M
, the best-response is of Type 2 in

Proposition 1. Here, improvement costs are too high to
benefit the agents who are far from the decision thresh-



(a) Type 1. (b) Type 2. (c) Type 3.

Fig. 1: Agent best-responses identified in Proposition 1. The axis shows agents’ features x, and colors show their action.

old, but low enough so that agents opt for improvement
over manipulation when both actions are uncertain.

• High improvement cost: If CM +
by

I−by
M

b̄y
M−by

M
≤CI , the best-

response is of Type 3 in Proposition 1. In this case, the
improvement cost is significantly higher than the ma-
nipulation cost, leading all agents to pick manipulation
when profitable.

B. Post-strategic population statistics

We next characterize the post-strategic population statis-
tics. In particular, as noted earlier, the strategic actions
w ∈ {M, I} change the agent’s true qualification and/or
feature. Denote the post-strategic qualification rates by α̂s =
P(Ŷ = 1|S = s), and the post-strategic feature distribution
by Ĝy

s(x) := P(X̂ = x|Ŷ = y,S = s). Let Iy
s := {x|Y = y,S =

s,w = I} be the set of agents from group s with label y
who opt for improvement under a given threshold policy θs.
Define My

s and Ny
s similarly for the set of agents who opt for

manipulation and for doing nothing. These sets of agents are
characterized by the best responses of Proposition 1 under
different problem parameter settings.

The following lemma presents the expressions for the post-
strategic population statistics in terms of the pre-strategic
population statistics and the best-response regions.

Lemma 1: The post-strategic qualification rate is given by

α̂s = αs +(1−αs)
∫

x∈I0
s

G0
s (x)dx (4)

The post-strategic feature distributions are given by:

Ĝ0
s (x) =

1−αs

1− α̂s

(
1(x ∈ N0

s )G
0
s (x)+(G0

s ∗ τ
0
M,s)(x)

)
. (5)

and,

Ĝ1
s (x) =

αs

α̂s

(
1(x ∈ N1

s )G
1
s (x)+

(G1
s ∗ τ

1
M,s)(x)+(G1

s ∗ τ
1
I,s)(x)

)
+

1−αs

α̂s
(G0

s ∗ τ
0
I,s)(x), (6)

where (Gy
s ∗τ

y
w,s)(x) :=

∫
z∈Wy

s
Gy

s(z)τ
y
w,s(x− z)dz is the convo-

lution of the feature distribution and boost function restricted
to the action w region.

IV. FIRM’S OPTIMAL POLICY

Using the findings of Section III, we can now determine
the firm’s optimal choice of decision thresholds.

We start with a firm who does not account for agents’
strategic behavior and does not implement any fairness
constraints; we refer to this as the unfair non-strategic firm.
The lemma below characterizes such firm’s optimal decision
thresholds as a function of the population statistics.

Lemma 2: The unfair non-strategic firm’s optimal deci-
sion thresholds θU

s satisfies G1
s (θ

U
s )

G0
s (θ

U
s )

= u−(1−αs)
u+αs

.
This is similar to results obtained in prior work [15], [16].

(The proof is omitted in interest of space.)
If the firm is cognizant of the agents’ strategic behavior,

the unfair strategic firm’s optimal thresholds θ̂U
s can be ob-

tained by finding the utility maximizer when the firm’s utility
(1) is evaluated on the population post-strategic statistics
characterized in Lemma 1. Specifically, the strategic firm’s
utility can be expressed as follows:

Û(θU
a ,θU

b ) :=U(θU
a ,θU

b )

+∑
s

u+αsΦ
1
s,(i)(θs)+u+(1−αs)Φ

0
s,(i)(θs)

+u+αsΨ
1
s,(i)(θs)−u−(1−αs)Ψ

0
s,(i)(θs), (7)

where (i) denotes the type of best response (as identified in
Proposition 1), and

Φ
y
s,(i)(θs) =

∫
z∈Iy

s

(
Gy

s(z)−Gy
s(z)T

y
I (θs − z)

)
dz,

Ψ
y
s,(i)(θs) =

∫
z∈My

s

(
Gy

s(z)−Gy
s(z)T

y
M(θs − z)

)
dz. (8)

Intuitively, the term Φ
y
s,(i)(θs) (resp. Ψ

y
s,(i)(θs)) captures

the change in the firm’s utility due to label y agents from
group s who opt for improvement (resp. manipulation) when
facing classifier θs. Note that the first three of these terms
increase the firm’s utility over the non-strategic utility: these
are all agents who improved, and the qualified agents who
manipulate. The last term, with the negative sign, decreases
the firm’s utility, as these are unqualified agents who pass
the threshold θs through manipulation. Accordingly, we can
characterize the unfair strategic firm’s optimal policy.

Lemma 3: The unfair strategic firm’s optimal deci-
sion thresholds θ̂U

s for best-response type (i) satisfy
Φ
′1
s,(i)+Ψ

′1
s,(i)−G1

s (θ̂
U
s )+

(1−αs)
αs Φ

′0
s,(i)

Ψ
′0
s,(i)−G0

s (θ̂
U
s )

= u−(1−αs)
u+αs

, where Φ
′y
s,(i) (Ψ

′y
s,(i))

is the first order derivative of Φ
y
s,(i) (Ψy

s,(i)) w.r.t θ̂s.
The detailed derivation of the thresholds under each best-

response type can be found in Table III. The main challenge
in finding these optimal thresholds is that the regions Iy

s and
My

s in which agents opt for the improvement and manipula-
tion actions are functions of the decision variables θs, and
these dependencies should be accounted for when evaluating
the derivatives Φ

′y
s,(i) and Ψ

′y
s,(i). This is done by applying

the Leibniz integral rule, and then leveraging the relation
between the threshold and the indifference points in agents’
strategic responses. (The detailed derivations are omitted in
interest of space.)



Intuitively, the terms in Table III can be interpreted as fol-
lows. Take (1−αs)

(
CI,sG0

s (o0
I,s)+(G0

s ∗τ0
I,s)(θ̂

U
s )−G0

s (r0
s )
)

,
appearing in the numerator of Type 1 equilibrium charac-
terization, which reflects the rate of change in the benefits
from accepting unqualified agents who opt for improvement,
as the decision threshold changes. If the decision threshold
θ̂U

s increases by a small ε , the firm will lose the agents at
x= o0

I,s who successfully made it to the old threshold through
improvement (at a rate (1−αs)CI,sG0

s (o0
I,s)), will lose some

of those with x ∈ (o0
I,s,r

0
I,s) who no longer make it to the

new threshold (at a rate (1−αs)(G0
s ∗ τ0

I,s)(θ̂
U
s )), yet will

gain from agents with x = r0
s who now opt for improvement

instead of manipulation (at a rate (1 − αs)G0
s (r0

s )). Other
expressions can be interpreted similarly.

Lastly, we extend the above two lemmas when the firm
also incorporates a fairness constraint in its selection.

Lemma 4: The fair non-strategic firm’s optimal decision
thresholds θC

s satisfy: ∑s ns
u+αsG1

s (θ
C
s )−u−(1−αs)G0

s (θ
C
s )

∂C
f

s (θC
s )

∂θC
s

= 0.

Lemma 5: The fair strategic firm’s opti-
mal decision thresholds θ̂C

s satisfy: ∑s ns
u+αs(Φ

′1
s,(i)+Ψ

′1
s,(i)−G1

s (
ˆ

θC
s ))+(1−αs)(u+Φ

′0
s,(i)−u−(Ψ

′0
s,(i)−G0

s (
ˆ

θC
s )))

∂C
f

s (θ̂C
s )

∂θC
s

= 0.

V. EFFECTS OF PREDICTING STRATEGIC BEHAVIOR

We can now proceed to analyzing the impacts of antic-
ipating agents’ strategic behavior on the optimal policies
and the firm’s utility by comparing the strategic policy θ̂s
(from Lemma 3) with the non-strategic policy θs (from
Lemma 2). We do so under Types 1 and 3 of agents’
best responses, which can be interpreted as relatively low
and high improvement costs, respectively, as illustrated in
Section III-A. Notably, Type 3 equilibria only include manip-
ulation decisions, whereas Type 1 includes both manipulation
and improvement decisions at equilibrium. Contrasting these
types of equilibria allows us to compare our findings with
prior work, e.g. [15], which have studied the impact of
anticipating gaming given only manipulation decisions.

To do so, first note that when a decision threshold θs
is lowered (resp. increased), more (resp. fewer) agents are
accepted without taking any strategic action. Motivated by
this, we begin with the following definition, which speci-
fies decision thresholds at which improvement/manipulation
decisions have their highest and lowest possible impact.

Definition 2: For Type (i) best-responses, define:
• Φ

y
s,(i) := {θ̂s ∈ argmaxθs Φ

y
s,(i)(θs)}; similarly for Ψ

y
s,(i).

• Φ
y
s,(i) := {θ̂s ∈ argminθs Φ

y
s,(i)(θs)}; similarly for Ψ

y
s,(i).

Recall that Φ
y
s,(i)(θs) captures the change in the firm’s

utility due to label y agents from group s who opt for
improvement. Then, in words, Φ

y
s,(i)(resp. Φ

y
s,(i)), which is

defined for Type 1 equilibria, denotes the value(s) of θs at
which label y agents from group s opting for improvement
would have their maximum (resp. minimum) impact on the
firm’s utility. The minimum possible impact is zero, which a
threshold in Φ

y
s,(i) can lead to for one of two reasons: either

θs is so high that none of the label y agents can advance
to θs even when opting for improvement, or so low that all
label y agents can be accepted with their original feature
x. (Formally, in these cases, the corresponding indifference
features defined in Definition 1 are outside the range of
agents’ feature distributions). On the other hand, Φ

y
s,(i) are

the θs under which the firm can induce the highest proportion
of label y agents in group s to succeed at improvement. The
terms Ψ

y
s,(i) and Ψ

y
s,(i), which are defined in both Type 1 and

3 equilibria, can be interpreted similarly.
Table IV outlines where the optimal policies lie relative to

these extreme values,3 under low vs. high base qualification
rates. Specifically, let ξ = u−

u−+u+
. Then, αs > ξ (resp. αs < ξ )

means that from the viewpoint of the firm, when accounting
for the relative costs of true vs. false positives, most of the
agents in group s are qualified (resp. unqualified) before any
strategic actions are taken. We refer to this as a majority
qualified (resp. majority unqualified) group.4

a) Majority-unqualified (low αs); Type 3 response:
Here, a nonstrategic firm choosing θs focuses on rejecting
the many unqualified agents by choosing a relatively high
θs. Strategic agents can still opt for manipulation to increase
their chances of surpassing the threshold. A strategic firm
accounts for this feedback loop, and increases θ̂s even further
(this is seen in the top right quadrant of Table IV). The higher
threshold accommodates less manipulation by unqualified
(Y = 0) agents who are now too far from the threshold to
benefit from manipulation, but leads to more manipulation
by qualified (Y = 1) agents who are no longer accepted
by default. Intuitively, this is the firm’s desired strategic
response by agents, as the group is majority unqualified, and
manipulation by qualified agents benefits the firm.

b) Majority-unqualified (low αs); Type 1 response:
In a Type 1 equilibrium, agents also have opportunities
to opt for improvement decisions; this is however not a
consideration in a non-strategic firm’s decision. Such firm
chooses a relatively high threshold θs, only with the intent of
rejecting more of the majority-unqualified group. A strategic
firm, on the other hand, understands that further increasing
the threshold θ̂s relative to θs not only reduces manipulation
opportunities, but also increases the benefits from agents who
opt for improvement. Formally, increasing θ̂s also increases
the indifference points ry

s (the feature at which agents flip
their decision from improvement to manipulation) and oy

I,s
(the feature at which agents first benefit from improvement).
The former increase in ry

s benefits the firm as there are
more qualified (Y = 1) and less unqualified (Y = 0) agents
in the new manipulation range (between the new ry

s and
θ̂s); this is the same observation made in Type 3 equilibria
above, and is in line with effects noted in prior work (e.g.,
[15]). The latter increase in oy

I,s also benefits the firm, as

3As an example, the inequality signs in the table reflect the following:
θs > Φ

y
s,(i) implies the selected threshold is not in (and specifically, greater

than) the values which would lead to the maximum proportion of label y
agents from group s to strategically select action I.

4In some real-world data, e.g., FICO credit scores [17], advantaged (resp.
disadvantaged) groups are found to be majority-qualified (resp. unqualified).



TABLE III: Optimal decision thresholds in Lemma 3.

Type Type 1 Type 2 Type 3
N

um
er

at
or CI,sG1

s (o1
I,s) + (G1

s ∗ τ1
I,s)(θ̂

U
s ) − (CI,s −

CM,s)G1
s (r1

s ) + (G1
s ∗ τ1

M,s)(θ̂
U
s ) +

(1−αs)
αs

(
CI,sG0

s (o0
I,s)+(G0

s ∗ τ0
I,s)(θ̂

U
s )−G0

s (r0
s )
) CM,sG1

s (o1
M,s) + (G1

s ∗ τ1
I,s)(θ̂

U
s ) + (G1

s ∗ τ1
M,s)(θ̂

U
s ) +

G1
s (f1

s )(CI,s − CM,s) − G1
s (r1

s )(CI,s − CM,s) +
(1−αs)

αs

(
G0

s (f0
s )(1 − T0

I,s(θ̂
U
s − f0

s )) − G0
s (r0

s ) + (G0
s ∗

τ0
I,s)(θ̂

U
s )

)
CM,sG1

s (o1
M,s) + (G1

s ∗
τ1

M,s)(θ̂
U
s )

D
en

o-
m

in
a-

to
r (1− (CI,s −CM,s))G0

s (r0
s )+(G0

s ∗ τ0
M,s)(θ̂

U
s ) CM,sG0

s (o0
M,s)−(1−T0

M,s(θ̂
U
s − f0

s ))G
0
s (f0

s )+(1−(CI,s −
CM,s))G0

s (r0
s )+(G0

s ∗ τ0
M,s)(θ̂

U
s )

CM,sG0
s (o0

M,s) + (G0
s ∗

τ0
M,s)(θ̂

U
s )

TABLE IV: Strategic vs non-strategic optimal thresholds.

α (0,ξ ) (ξ ,1)
Strategic Non-Str. Strategic Non-Str.

Type 1 ∈
Φ

1
(1)

∈ Φ
0
(1) <

Φ
1
(1)

≤
Φ

0
(1)

≥
Φ

1
(1)

≤
Φ

0
(1)

∈
Φ

1
(1)

<
Φ

0
(1)

∈
Ψ

1
(1)

≤ Ψ
0
(1) ∈

Ψ
1
(1)

∈
Ψ

0
(1)

∈
Ψ

1
(1)

≤
Ψ

0
(1)

∈
Ψ

1
(1)

∈
Ψ

0
(1)

Type 3 ≥
Ψ

1
(3)

(Ψ
0
(3),Ψ

0
(3)] <

Ψ
1
(3)

∈
Ψ

0
(3)

<
Ψ

1
(3)

<
Ψ

0
(3)

∈
Ψ

1
(3)

≤
Ψ

0
(3)

there are now more agents (in both label Y = 0 and Y = 1)
opting for improvement who successfully improve their true
qualification states, are accepted by the firm, and positively
impact its utility. This effect is new to our model, and
highlights how anticipating gaming can lead to increased
improvement incentives among agents. These effects are
illustrated in the top left quadrant of Table IV.

c) Majority-qualified (high αs); Type 3 response: Here,
we observe similar effects as before, in that a strategic
firm chooses a higher threshold than a non-strategic firm
to control strategic manipulation (as illustrated in the bot-
tom right quadrant of Table IV). Interestingly, the strategic
firm might overall increase the number of agents who get
accepted through manipulation, as the increase in threshold
would drive the many qualified (Y = 1) agents who are no
longer accepted by default to choose M (note however that
the change still decreases the number of unqualified agents
(Y = 0) who can pass the threshold through manipulation).

d) Majority-qualified (high αs); Type 1 response: For
Type 1 best-responses, the impacts of anticipating strategic
behavior on the firm’s utility is more significant in the
majority-qualified case compared to the majority-unqualified
case. When the majority are qualified, the strategic policy can
select a threshold that still allows qualified agents to manipu-
late, keeping similar or fewer manipulation opportunities for
unqualified agents. This threshold can also motivate more
qualified and unqualified agents to improve (due to similar
reasons noted in the majority-unqualified case). These effects
are illustrated in the bottom left quadrant of Table IV.

VI. NUMERICAL ILLUSTRATION

We further illustrate the findings of Section V through
a numerical example. We consider a population consist-
ing of two equal size groups a and b, with group a
being majority-qualified (αa = 0.7) and group b being
majority-unqualified (αb = 0.2). The feature distributions
for both groups follows Gaussian distributions, with G0

a =
N(70,152),G0

b = N(60,152),G1
a = N(110,152),and G1

b =

N(90,152). We let the boost distributions follow uni-
form distributions, with τ1

I,s(b) =Uni f orm(40,80),τ0
I,s(b) =

Uni f orm(35,77), and τ
y
M,s(b) = Uni f orm(10,75), and let

the costs of the decisions be CI,s = 0.3, and CM,s = 0.2, so
that the agents’ best-responses follow a Type 1 (manipulation
and improvement) equilibrium. Note that we assume the
same costs across groups s ∈ {a,b}, with disparities arising
due to the difference in their feature distributions.

We compare the non-strategic and strategic (Table V)
firms’ utilities and thresholds, and their impact on how agents
from different groups and labels opt for manipulation vs.
improvement decisions. Specifically, the rows Iy

s and My
s

show the percentage of pre-strategic label y agents from
group s who choose the respective action (out of the total
population of agents), and %y

w,s denotes the percentage of
post-strategic label y agents from group s opting for action
w who successfully get accepted.

First, we note that the observations made in Section V are
reflected in these experiments: for both the majority-qualified
group a and the majority-unqualified group b, a strategic
firm incentivizes improvement decisions. It also discourages
manipulation in both groups, but discourages it significantly
more in the majority-unqualified group b (while allowing for
more manipulation by qualified agents in both groups).

Next, we contrast the pre-strategic αs and post-strategic
α̂s qualification rates for each group. First, whether the firm
is strategic or not, these rates increase regardless of the use
of fairness constraints and across groups. This is due to the
availability of the improvement option. We also note that the
strategic firm is more successful at incentivizing improve-
ment actions, as evidenced by the higher α̂s in both groups a
and b compared to the non-strategic firm. More interestingly,
the majority-unqualified group b becomes majority-qualified
in both fair and unfair policies implemented by the strategic
firm. This is however not the case with DP-Fair and TPR-
Fair policies selected by a non-strategic firm. Such firm
does not account for agents’ strategic responses, lowering
the decision threshold on group b and increasing it on group
a, in order to satisfy the fairness constraint. This reduces
the motivation of agents from group b to improve, as more
are accepted by default, while also enabling other (majority-
unqualified) agents from this group to pass the threshold
through manipulation. In contrast, a non-strategic firm lowers
its fair thresholds on group b much less drastically, as it
realizes that parity between selection rates (as required by
DP) and true-positive rates (as required by TPR) can be
achieved by a combination of adjusting the thresholds and
driving agents’ best-responses.



TABLE V: Comparison of Non-strategic and Strategic Policies.

Non-strategic policy Strategic policy
UnFair DP-Fair TPR-Fair UnFair DP-Fair TPR-Fair

UTotal 48.32 27.85 41.72 81.17 74.97 69.49
Group a b a b a b a b a b a b
U(θs) 64.23 33.72 71.27 -14.83 77.14 6.95 88.77 73.75 84.88 66.29 85.73 54.78

θs 80 78 86.45 55.11 88.6 68.63 106.87 97.25 116.68 90.305 116.9 84.815
αs 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2 0.7 0.2
α̂s 0.79 0.62 0.85 0.26 0.87 0.44 0.96 0.90 0.96 0.85 0.96 0.76

Ŷ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
I 0.1 9.9 0.5 42.9 0.2 15 0 6.1 0.4 16.7 0.1 24 6.7 26.5 5.3 70.5 18.1 25.9 2.8 64.8 18.3 25.6 1.4 56.5
M 1.6 12.6 3.5 27.9 3.7 11 0.2 23.7 4.9 10 1.4 33.3 22.6 2.5 8.3 6.1 28.8 0.6 7.3 12.7 29.2 0.6 5.8 19.3
%y

I,s 9.8 - 41.7- 14.7 - 6.1 - 16.5 - 23.7 - 29 - 64.5 - 37.3 - 60.7 - 37.3 - 54 -
%y

M,s 1.6 12.3 3.5 27.2 3.7 10.7 0.1 23.4 4.9 9.7 1.4 32.7 22.2 2.4 8.1 5.8 28.3 0.6 7.2 12.3 28.7 0.6 5.7 18.8
Total 70.6 19.9 61 36.4 84.2 14.8 26 73.6 86 13 44.6 55.3 91.8 2.6 78.9 6.4 88.5 0.7 77.6 14.1 88.5 0.6 72.3 22.7
■ significant decrease. ■ decrease. ■ increase. ■ significant increase.

VII. CONCLUSION AND FUTURE WORK

We proposed a Stackelberg game model to study strategic
classification, where a firm deploys a (fair) classifier and
agents strategically respond by adjusting their true quali-
fication states and/or observable features to increase their
chances of acceptance. We model both different costs and
stochastic efficacy for the agents’ manipulation and improve-
ment actions. We find that anticipating strategic behavior can
allow the firm to not only curb manipulation behavior (as
also noted in prior work) but can also incentivize agents to
opt for improvement decisions. Specifically, we find that a
strategic firm chooses its policy to incentivize improvement
by unqualified agents (driving them to improve both their
qualification states and observable features), while still al-
lowing for manipulation by some qualified agents (who do
not have sufficiently high observable features to be selected
otherwise). Our numerical experiment highlights that the firm
can leverage agents’ strategic behavior (mainly, improvement
decisions) to satisfy fairness constraints without drastically
adjusting its selection rule; analytical support for this obser-
vation is a main direction of our future work.
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[1] M. Möhlmann and L. Zalmanson, “Hands on the wheel: Navigating
algorithmic management and uber drivers’,” in Autonomy, in proceed-
ings of the international conference on information systems, 2017.

[2] “5 resume hacks to pass ATS,”
https://www.forbes.com/sites/ashleystahl/2022/12/12/5-resume-
hacks-to-pass-ats/?sh=3668530d4b2b, accessed: 2024-03-15.

[3] M. Eslami, K. Karahalios, C. Sandvig, K. Vaccaro, A. Rickman,
K. Hamilton, and A. Kirlik, “First i” like” it, then i hide it: Folk
theories of social feeds,” in Proceedings of the 2016 CHI conference
on human factors in computing systems, 2016.

[4] S. Levanon and N. Rosenfeld, “Generalized strategic classification
and the case of aligned incentives,” in International Conference on
Machine Learning, 2022.

[5] T. Lechner and R. Urner, “Learning losses for strategic classification,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 7, 2022, pp. 7337–7344.

[6] S. Levanon and N. Rosenfeld, “Strategic classification made practical,”
in International Conference on Machine Learning, 2021.

[7] S. Milli, J. Miller, A. D. Dragan, and M. Hardt, “The social cost of
strategic classification,” in Proceedings of the Conference on Fairness,
Accountability, and Transparency, 2019, pp. 230–239.

[8] Y. Shavit, B. Edelman, and B. Axelrod, “Causal strategic linear
regression,” in International Conference on Machine Learning, 2020.

[9] Y. Bechavod, K. Ligett, S. Wu, and J. Ziani, “Gaming helps! learning
from strategic interactions in natural dynamics,” in International
Conference on Artificial Intelligence and Statistics, 2021.

[10] K. Jin, X. Zhang, M. M. Khalili, P. Naghizadeh, and M. Liu, “Incentive
mechanisms for strategic classification and regression problems,” in
The 23rd ACM Conference on Economics and Computation, 2022.

[11] T. Alon, M. Dobson, A. Procaccia, I. Talgam-Cohen, and J. Tucker-
Foltz, “Multiagent evaluation mechanisms,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2020.

[12] K. Jin, Z. Huang, and M. Liu, “Collaboration as a mechanism for more
robust strategic classification,” in 62nd IEEE Conference on Decision
and Control (CDC), 2023.

[13] X. Zhang, R. Tu, Y. Liu, M. Liu, H. Kjellstrom, K. Zhang, and
C. Zhang, “How do fair decisions fare in long-term qualification?”
Advances in Neural Information Processing Systems, 2020.

[14] “8 astonishing stats on academic cheating,”
https://www.oedb.org/ilibrarian/8-astonishing-stats-on-academic-
cheating/, accessed: 2024-03-15.

[15] X. Zhang, M. M. Khalili, K. Jin, P. Naghizadeh, and M. Liu,
“Fairness interventions as (dis) incentives for strategic manipulation,”
in International Conference on Machine Learning, 2022.

[16] Y. Liao and P. Naghizadeh, “Social bias meets data bias: The impacts
of labeling and measurement errors on fairness criteria,” The Thirty-
Seventh AAAI Conference on Artificial Intelligence, 2023.

[17] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in super-
vised learning,” Advances in neural information processing systems,
2016.

APPENDIX

A. Proof of Proposition 1

We begin by establishing the possible orderings between
the indifference points of Definition 1, under Assumption 2,
showing that the cases identified in Proposition 1 cover all
possible equilibrium outcomes given the possible orderings
of the four constants oy

M,s,o
y
I,s, f

y
s ,ry

s .
Lemma 6: We have ry

s ≥{fy
s ,oy

M,s}. Further, if fy
s is unique,

either fy
s ≥ max{oy

M,s,o
y
I,s}, or fy

s ≤ min{oy
M,s,o

y
I,s}. Addition-

ally, if oy
I,s ≤ oy

M,s, there is at most one fy
s ≤ oy

I,s.
Proof: First, note that (Ty

M,s)
−1(CI − CM,s) ≤

(Ty
M,s)

−1(1−CM,s); this is because the inverse CDF is an
increasing function, and CI,s ≤ 1. Therefore, oy

M,s ≤ ry
s . Also,

by definition, Ty
M,s(θs−fy

s)−Ty
I,s(θs−fy

s)=Ty
M,s(θs−ry

s), and
therefore fy

s ≤ ry
s . Finally, note that if fy

s ≥ oy
M,s, then Ty

I,s(θs−
fy
s) = Ty

M,s(θs − fy
s)− (CI,s −CM,s)≤ Ty

M,s(θs −oy
M,s)− (CI,s −

CM,s) = 1 −CI,s = Ty
I,s(θs − oy

I,s), and therefore fy
s ≥ oy

I,s.
Similarly, we can show that if fy

s ≤ oy
M,s, then fy

s ≤ oy
I,s. Lastly,

if oy
I,s ≤ oy

M,s, and given that us(0,y, I) < us(0,y,M) due to
FOSD, it must be that the utility of I crosses the utility of
M at some x ≤ oy

I,s, and therefore fy
s ≤ oy

I,s.
Now, note that if x ≥ θs, the agent is already admitted

by the classifier, and finds it optimal to do nothing. As



such, only agents with x < θs may opt for manipulation or
improvement decisions. For these agents, the probability of
being admitted if neither action is taken is zero. Together
with (3), this means that the utility of such agents with
x < θs when choosing w ∈ {M, I} reduces to us(x,y,w) =
P(x̂ ≥ θs|X = x,Y = y,W = w,S = s)−Cw,s.

We now proceed by finding the features oy
M,s at which the

agent first finds it beneficial to opt for manipulation over
doing nothing. Note that the agent’s utility is non-decreasing
in x. This is because we have assumed adopting either of the
two actions M or I weakly increases the agent’s feature, and
hence (weakly) increases the probability of being admitted
by the classifier. This means that if an agent with feature x̄
prefers action w over doing nothing, so will all x > x̄.

Recall that us(x,y,N) = 0. Therefore, oy
M,s is the first x at

which us(x,y,M)≥ 0. This is given by:

P(x̂ ≥ θs|X = x,Y = y,W = M,S = s)≥CM,s

⇔ x ≥ θs − (Ty
M,s)

−1(1−CM,s) .

Therefore, the first point at which the agent finds it beneficial
to opt for M over N is oy

M,s = max{0,θs − (Ty
M,s)

−1(1 −
CM,s)}. The first point at which the agent benefits from
I over N can be similarly found to be oy

I,s = max{0,θs −
(Ty

I,s)
−1(1 −CI,s)}. Let z := argmin{M,I}{oy

I,s,o
y
M,s}. Then,

agents with 0 ≤ x < min{oy
I,s,o

y
M,s} opt for N, while those

with min{oy
I,s,o

y
M,s} ≤ x < max{oy

I,s,o
y
M,s} opt for action z.

Next, given that the improvement action first-order
stochastically dominates the manipulation action, it must be
that by

M,s ≤ by
I,s (and also that b̄y

M,s ≤ b̄y
I,s). First, we note that

once x ≥ θs−by
M,s the agent gets admitted with probability 1

with either M or I, and therefore would choose the cheaper
action. This means that for θs − by

M,s ≤ x < θs, the agent
chooses action M over I. Given the continuity of the utility
functions under actions M and I, we expect this argument to
carry for some x smaller than θs −by

M,s as well.
Specifically, once θs − by

I,s ≤ x ≤ θs − by
M,s, the agent

receives sufficient boost to get admitted with probability 1
when choosing action I, but is still uncertain when choosing
M. Formally, improvement has a utility of 1−CI,s, whereas
manipulation has a utility of 1−T y

M,s(θs − x)−CM,s. There-
fore, if 1−T y

M,s(θs − x)−CM,s ≥ 1−CI,s in this region, or
equivalently once x ≥ ry

s , the uncertainty from action M
is small enough for the agent to choose action M over I.
Note also that this argument will continue to hold even if
the indifference point ry

s is such that ry
s ≤ θs −by

I,s, because
this would only increase the uncertainty about I, making the
utility from choosing I smaller than 1−CI,s; this means that
the utility of action M will still be higher than the utility of
I when x ≥ ry

s , making action M preferable to I.
Finally, agents with max{oy

I,s,o
y
M,s} ≤ x ≤ min{ry

s ,θs −
by

I,s} (provided the region is non-empty) would benefit
from either manipulation or improvement actions over doing
nothing, but face uncertainties about making it to an admit
decision when opting for these actions, leading to a cost-
efficacy trade off between these choices. Formally, define
∆us(x,y) := us(x,y, I)−us(x,y,M), the difference between the

utility of improvement and manipulation. This difference is:

∆us(x,y) = P(x̂ ≥ θs|X = x,Y = y,W = M,S = s)−CM,s

− (P(x̂ ≥ θs|X = x,Y = y,W = I,S = s)−CI,s)

=
(

Ty
M,s(θs − x)−Ty

I,s(θs − x)
)
− (CI,s −CM,s) . (9)

If this difference is positive, the agent will opt for I over
M. Recall that fy

s is the feature such that Ty
M,s(θs − fy

s)−
Ty

I,s(θs−fy
s)=CI,s−CM,s. This is the point at which the agent

is indifferent between the M and I actions. If M is preferred
to I before this point, this is the point at which the agent
would switch from M to I, once I has a non-negative utility
(and vice versa for when I is initially preferred to M).

Using the above characterizations, together with Lemma
6, leads to the identified best responses in each case.

B. Proof Lemma 1
We begin by noting that the new set of qualified (Ŷ =

1) agents consists of previously qualified agents, as well as
previously unqualified agents who opted for improvement
decisions. Therefore, the new qualification rate is given by
α̂s = αs +(1−αs)

∫
I0
s

G0
s (x)dx.

Next, note that the set of (now) qualified agents with
feature x consists of the previously qualified agents with
the same old feature x (who have opted for w = N), the
previously qualified or unqualified agents with feature x−b
who improved to feature x (i.e., opted for w = I and got
a boost realization b), and previously qualified agents with
feature x−b who chose manipulation and reached feature x
(i.e., opted for w = M and got a boost realization b). Thus,

Ĝ1
s (x) =

αs
α̂s

(
1(x ∈ N1

s )G
1
s (x)+

∫
b
1(x−b ∈ M1

s )G
1
s (x−b)

τ
1
M,s(b)db +

∫
b
1(x−b ∈ I1

s )G
1
s (x−b)τ1

I,s(b)db
)

+ 1−αs
α̂s

∫
b
1(x−b ∈ I0

s )G
0
s (x−b)τ0

I,s(b)db (10)

We can re-write the expression for the integrals over the
boost values using a change of variable z := x−b as follows:∫

∞

0
1(x−b ∈ M1

s )G
1
s (x−b)τ1

M,s(b)db

=
∫ −∞

x
1(z ∈ M1

s )G
1
s (z)τ

1
M,s(x− z)d(x− z)

=
∫ x

−∞

1(z ∈ M1
s )G

1
s (z)τ

1
M,s(x− z)dz

=
∫

z∈M1
s

G1
s (z)τ

1
M,s(x− z)dz .

Substituting the above in (10) leads to (6).
Using similar arguments, the post-strategic feature distri-

bution of (now) unqualified agents from group s consists of
unqualified agents with the same feature who have opted
to do nothing, and previously unqualified agents who have
opted for manipulation and have reached feature x. Thus:

Ĝ0
s (x) =

1−αs
1−α̂s

(
1(x ∈ N0

s )G
0
s (x)

+
∫

b
1(x−b ∈ M0

s )G
0
s (x−b)τ0

M,s(b)db
)

(11)

Re-writing the integral similar to before leads to (5).


