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Abstract—Network games have provided a framework to study
strategic decision making processes that are governed by an
underlying network of interdependencies among agents. However,
existing models do not account for environments in which agents
simultaneously interact over multiple networks. In this paper,
we propose a model of multiplex network games to capture the
different modalities of interactions among strategic agents. We
then explore how the properties of the constituent networks of
a multiplex network can undermine or support the uniqueness
of its Nash equilibria. We first show that in general, even if the
constituent networks are guaranteed to have unique Nash equi-
libria in isolation, the resulting multiplex need not have a unique
equilibrium. We then identify certain subclasses of networks
wherein guarantees on the uniqueness of Nash equilibria on the
isolated networks lead to the same guarantees on the multiplex
network game. We further highlight that both the largest and
smallest eigenvalues of the constituent networks (reflecting their
connectivity and two-sidedness, respectively) are instrumental in
determining the uniqueness of the multiplex network equilibrium.
Together, our findings shed light on the reasons for the fragility of
the uniqueness of equilibria in multiplex networks, and potential
interventions to alleviate them.

Index Terms—Nash equilibrium, multiplex network, unique-
ness, P-matrix, lowest eigenvalue.

I. INTRODUCTION

Complex networks provide a powerful framework for un-
derstanding and analyzing real-world environments where
agents do not operate in isolation, but rather interact with
and influence one another. In particular, when the agents in
these networks are rational and self-interested, the interactions
among them can be modeled as a network game; see [1] for
a survey. Such networked strategic interactions emerge in the
studies of local provision of public goods on networks [2]–[4]
(such as cyber-security, R&D), spread of shocks in financial
markets [5], and pricing in the presence of social effects and
externalities [6], [7], to name a few.

A primary goal of the research on network games has been
to understand how the structural properties of the network
of interactions among the agents influences the equilibrium
outcomes. This understanding can help us interpret how a
network’s performance metrics are affected by its structure,
plan targeted policy interventions or economic incentives to
shape agents’ behavior, and design/modify network structures
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to attain desirable equilibrium outcomes. In particular, existing
works have identified necessary and sufficient conditions for
the existence, uniqueness, and/or stability of Nash equilibria
of network games [2]–[4], [8]–[20].

Although these existing works capture a network of in-
teractions between the agents, they fail to capture the var-
ious networks over which the agents interact. For instance,
individuals are influenced by information received over mul-
tiple social networks, as well as face-to-face interactions,
when making decisions. Similarly, firms in a market can
cooperate and compete with each other through different
modes of business (e.g., both physical storefronts and online
shops). In these situations, a multiplex network model can
be used to simultaneously account for the multiple networks
of interactions among the agents. The study of multiplex
networks, as opposed to the study of its constituent single-
layer networks in isolation, can offer a nuanced understanding
of how different modalities of information and interactions
impact agents’ behavior and network-level outcomes. While
existing work has provided such insights (primarily about
percolation and spread of dynamical processes on multiplex
networks), the study of games on this type of multilayer
networks remains largely unexplored, with game-theoretical
modeling and analysis identified as an open area of research
by surveys of the field [21]–[24].

Motivated by this, in this paper, we extend the existing
models of single-layer network games, and propose a multiplex
network game to study strategic interactions over multiplex
networks. We then use this model to identify conditions under
which the Nash equilibria (NE) of multiplex network games
are (not) unique based on the properties of its constituent
single-layer networks. These findings uncover potential rea-
sons for the fragility of the uniqueness of Nash equilibria in
multiplex networks.

A. Paper overview and contributions

We study a two-layer multiplex network consisting of two
single-layer networks α and β. In a network game, the utility
of an agent is assumed to be a function of a weighted sum
of its own effort and its neighboring agents’ efforts, with the
intensity and nature of the agents’ influences on each other
captured in a directed and weighted interdependency matrix;
denote these by A and B for layers α and β, respectively.



In our proposed model of the multiplex network game (Sec-
tion II), agents are influenced by both of these interdependency
matrices simultaneously, experiencing a weighted interdepen-
dency matrix G = κA + (1 − κ)B in the multiplex network
game, where κ ∈ [0, 1] is the relative importance of layer α.

Prior work on single-layer network games in [4] shows that
the network game played on a network with (a weighted and
directed) interdependency matrix M will have a unique Nash
equilibrium if and only if I + M is a P-matrix.1 Our first
contribution is to identify conditions under which I +G, the
weighted sum of I +A and I +B, is (and is not) a P-matrix
(Section III). We first provide an example (Example 1) to show
that the sum of two P-matrices is in general not a P-matrix;
this means that even if the two layers are guaranteed to have
unique Nash equilibria in isolation, the resulting multiplex
need not have a unique NE. We then identify a sufficient
condition (Proposition 1) under which the multiplex game
is not guaranteed to have a unique NE (that is, there will
be payoff realizations under which the multiplex either has
no NE or has multiple NE). We also show (Proposition 2)
that for certain subclasses of networks, if the games on the
isolated layers are guaranteed to have a unique NE, so will the
multiplex network. Intuitively, the identified networks (namely,
strictly row diagonally dominant networks and B-networks)
are such that the influence of agents on each other can be
sufficiently bounded.

We then consider the special case of symmetric (i.e., undi-
rected) networks (Section IV). For this case, prior works on
single-layer networks [2], [4] show that the game on a network
with symmetric interdependency matrix M will have a unique
Nash equilibrium if and only if |λmin(M)| < 1. The lowest
eigenvalue is a measure of a network’s “two-sidedness”, with a
smaller (more negative) lowest eigenvalue being an indication
that agents’ actions “rebound” more in the network [2].
This means that, intuitively, this existing condition on NE
uniqueness requires the (single-layer) network to have limited
rebounds or two-sidedness.

Extending this to multiplex network games, we first note
that in contrast to the general case of Section III, if two
symmetric layers α and β already have structures that are
conducive to unique NE in isolation, so will the symmetric
multiplex network emerging from joining them. In light of this,
we identify situations in which layer α supports a unique NE,
yet layer β can undermine the guarantee on the uniqueness of
NE of the resulting multiplex. In particular, we show (Propo-
sition 3) that if the connectivity of layer α (as characterized
by its largest eigenvalue) is not high enough to mute the
ups and downs introduced by layer β (as characterized by
its smallest eigenvalue), then the multiplex is not guaranteed
to have a unique Nash equilibrium. We further elaborate on
this observation in some special classes of networks (namely,
regular, tree, random, and scale-free graphs).

1A P-matrix, which most notably emerges in the study of linear complemen-
tarity problems (LCPs) [25], encompasses positive definiteness as a special
case; we elaborate on this in Section II-C.

B. Related work

Our work is at the intersection of two lines of literature:
(i) the study of properties of Nash equilibria of single-
layer network games, and (ii) game-theoretical modeling and
analysis on multilayer and multiplex networks.

Nash equilibria of single-layer network games. Our work is
most closely related to those studying the existence, unique-
ness, and/or stability of Nash equilibria of games with lin-
ear [2], [4], [10]–[12] and nonlinear [15]–[17] best-replies
played on single-layer networks. Our proposed model of
multiplex network games is an extension of those of single-
layer network games with linear best-replies, and as such
extends the condition on the uniqueness of NE in these games.
In particular, we show that not only the lowest eigenvalue
of the individual layers (which has been shown to be of
importance in guaranteeing uniqueness of NE in single-layer
network games of both linear and non-linear best-replies), but
also their largest eigenvalues, play a role in determining the
uniqueness of the NE of a multiplex game.

Games on multilayer/multiplex networks. While game theo-
retical decision making on multilayer networks has also been
studied in some prior works [21], [26]–[28], the majority of the
research has focused on evolutionary games and the emergence
of cooperation in public good games. In particular, [27]
studies the problem of emergence of cooperation in multiplex
networks, and shows that a multiplex structure enhances the
resilience of cooperation through a nontrivial organization
of the cooperative behavior across layers. The work of [28]
studies similar cooperation games, and explores the impact of
the number of layers and the number of links on the multiplex
network’s ability to support cooperation over defection. These
works have both considered a binary action (cooperate/defect)
game, played on specific classes of graphs. In contrast, we
propose a more general class of multiplex networks games,
and provide insights into their Nash equilibria properties.

The recent work of [29] is also related to ours, as it proposes
a multi-relational network game which can be interpreted as a
model of games played on a multilayer network. In the multi-
relational network game, each agent has a multi-dimensional
action space, with the utility from each action dimension being
governed by a different network of interdependencies. The
main focus of [29] is on identifying summary representations
of the game matrices that can be used to significantly lower
the computation complexity of ascertaining the uniqueness of
NE. In addition to our different model of multiplex network
games, our work is different in its focus: we illustrate how
the properties of the constituent layers of a multiplex network
can undermine or support the uniqueness of the NE of the
multiplex network game.

II. MODEL AND PRELIMINARIES

A. Single-layer network games

We consider a set of N agents, initially interacting with each
other over an incumbent network α (e.g., an existing cyber-
physical system, social network, or industry). This network is



specified by a graph Gα :=< V, A >, where the N agents
constitute the set of vertices V , and A is the weighted and
directed interdependency matrix over network α.

Each agent i selects an effort level x ∈ R≥0; this could
represent the amount of investment in a public good such as
cyber security or R&D. The agent’s utility is determined by
its own effort, as well as the effort of its neighboring agents
in the network.

Specifically, an edge aij ∈ A indicates that agent i is
affected by agent j’s effort. If aij > 0 (respectively, < 0), we
say agent j’s effort is a substitute (respectively, complement)
to agent i’s effort. In our setting, a strategic substitute (resp.
complement) means that effort by agent j provides positive
(resp. negative) externality to agent i, in that an increase in
effort by agent j allows agent i to decrease its own effort
(resp. requires agent i to increase its effort) and still receive the
same overall payoff. For instance, security investments can be
a strategic substitute when a better protected firm j positively
impacts other firms i that share operations and assets with
firm j, by decreasing the risk of business interruption or asset
compromise. On the other hand, security investments can be a
strategic complement when an increase in firm j’s protection
makes a similar, but less protected firm i a more attractive
target for attackers.

Formally, let x = {x1, x2, . . . , xN} denote the vector of all
agents’ efforts. Agent i’s utility in network α is given by:

ui(x;A) = bi(xi +
∑
j

aijxj)− cixi , (1)

where bi(·) : R → R is a twice-differentiable, strictly
increasing, and strictly concave benefit function, and ci > 0 is
the unit cost of effort for agent i.

The (single-layer) network game specified by the set of N
agents, their efforts x, and their utility functions {ui(x;A)}
has been studied in prior works (e.g., [2], [4], [9]). In partic-
ular, these games are known as games of linear best-replies,
as the Nash equilibrium x∗ is determined by a set of linear
best-response equations of the form:

x∗
i = max{0, qi −

∑
j

aijx
∗
j} , (2)

where qi satisfies b′i(qi) = ci. Intuitively, an agent i wants to
receive an aggregate effort level qi at equilibrium; this is the
effort level at which the agent’s marginal benefit and marginal
cost of effort are equalized. The best-response (2) states that
the agent exerts the effort x∗

i that will allow it to reach an
aggregate effort level qi given the spillover

∑
j aijx

∗
j received

from its neighboring agents’ effort at equilibrium (or exerts
no effort if the spillovers already provide aggregate effort qi
or higher).

B. Multiplex network games

Our goal in this paper is to contrast the properties of
the NE of the single-layer network α, with that of a two-
layer multiplex network emerging after the addition of a new
network β of interactions among the agents (e.g., a new CPS,

social network, or industry). Let this second layer be defined
by a graph Gβ :=< V, B >, with the same set of vertices as
network α, but its own interdependency matrix B.

The two-layer multiplex network G :=< N , {A,B} > is
the environment in which interactions between the N agents
occur over both networks α and β simultaneously, but each
governed by a different interdependency matrix. The utility of
agent i in the multiplex network is given by

ui(x;A,B, κ) =

bi(xi + κ
∑
j

aijxj + (1− κ)
∑
j

bijxj)− cixi, (3)

where κ ∈ [0, 1] captures the effect of each layer on the
agent’s utility, with higher κ’s indicating higher effects from
the incumbent network α.

The resulting multiplex network game is again a game
of linear best-replies, where at equilibrium, agent i aims to
choose x∗

i so as to reach the same aggregate level of effort qi,
but this time while being exposed to spillovers κ

∑
j aijx

∗
j +

(1 − κ)
∑

j bijx
∗
j from the multiplex network. As such, the

multiplex network game can be viewed as a network game
played over the interdependency matrix G := κA+(1−κ)B.

C. Uniqueness of NE on single-layer network games

By exploring the connection of the Nash equilibrium prob-
lem and linear complementarity problems (LCPs), [4] iden-
tified conditions for existence and uniqueness of the NE of
single-layer network games. In particular, we begin with the
following definition.

Definition 1. A square matrix M is a P-matrix if the deter-
minants of all its principal minors (i.e., the square submatrix
obtained from M by removing a set of rows and their corre-
sponding columns) are strictly positive.

The class of P-matrices includes positive definite (PD)
matrices as a special case;2 in particular, every PD matrix
(whether symmetric or not) is a P-matrix, but there are
(asymmetric) P-matrices that are not PD [25]. We also note
that for symmetric matrices, the two notions are equivalent,
i.e., a symmetric matrix is a P-matrix if and only if it is PD.

The following theorem provides the necessary and sufficient
condition for the Nash equilibrium of the network game on a
single-layer network (whether symmetric or not) to be unique.

Theorem 1. [4, Theorem 1] The single-layer network game
on a network with interdependency matrix A has a unique
Nash equilibrium if and only if I +A is a P-matrix.

The following corollary is the special case of Theorem 1
for symmetric networks.

Corollary 1. [2], [4, Corollary 1] Consider a single-layer
network game on a symmetric interdependency matrix A.

2A common convention adopted in some of the literature is to define
positive definiteness for symmetric (or Hermitian) matrices, owing to their
roots in quadratic forms. However, we adopt the more general definition
here: A square matrix M (whether symmetric or not) is positive definite
if xTMx > 0 for all x ̸= 0.



This game has a unique Nash equilibrium if and only if
|λmin(A)| < 1.

Bramoullé, Kranton, and D’amours [2] were the first to
show that the above condition on the lowest eigenvalue of
(symmetric) interdependency matrices is sufficient for the
uniqueness of NE of network games; Naghizadeh and Liu [4]
further showed that this condition is necessary.

We can use Theorem 1 and its corollaries to discuss the
existence and uniqueness of the NE of a multiplex network
game in terms of the properties of its interdependency matrix
G = κA + (1 − κ)B. In particular, the game has a unique
Nash equilibrium if and only if I + G is a P-matrix, and if
and only if |λmin(G)| < 1 when G is symmetric.

While we can directly check these conditions for G, it might
be of interest for computational efficiency, and also for gaining
intuition about the operation of multiplex networks (as we
show shortly), to identify when these conditions on G are
true, or when they fail to hold, based on the properties of A
and B. Specifically, we want to understand when I + G, the
weighted sum of two matrices I + A and I + B, is (not) a
P-matrix, as well as bounds on G’s minimum eigenvalue in
terms of the spectrum of A and B. We present such conditions
in the remainder of the paper.

III. NASH EQUILIBRIA OF MULTIPLEX NETWORKS WITH
GENERAL INTERDEPENDENCY MATRICES

We first consider games with general (directed) interdepen-
dency matrices, and ask when I+G, the weighted sum of I+A
and I + B, is a P-matrix? This will require us to check that
the determinants of all principal minors of I+G are positive;
these are the determinants of the sum of the corresponding
principal minors in I+A and I+B. However, the determinant
of the sum of two square matrices A and B is in general not
expressible in terms of the determinants of the two matrices.3

This means that knowledge of the P-matrix property of I +A
and/or I +B does not necessarily help establish the P-matrix
property for I +G.

In fact, the following example shows that the sum of two
P-matrices is not always a P-matrix.

Example 1. Consider a two-agent multiplex network game,
with the (asymmetric) interdependency matrices A =(
0 a− ϵ
1
a 0

)
and B =

(
0 b− ϵ
1
b 0

)
, Provided that a, b, and

ϵ are positive, I +A and I +B are P-matrices.
Once the two layers are connected, the matrix G

for the multiplex network game is given by G =(
0 κa+ (1− κ)b− ϵ

κ
a + 1−κ

b 0

)
. Then, I +G is a P-matrix

if and only if

κ2 + (1− κ)2 + κ(1− κ)(
a

b
+

b

a
)− ϵ(

κ

a
+

1− κ

b
) < 1 .

3The Marcus–de Oliveira determinantal conjecture, which conjectures that
the determinant of the sum of two matrices is in a convex hull determined
by the eigenvalues of the two matrices, remains as one of the open problems
in matrix theory, with the conjecture shown to hold for some special classes
including Hermitian matrices [30].

However, the left-hand side of the inequality above will be
increasing in a once a is sufficiently large. Therefore, there
exists an ā such that for a ≥ ā, I +G will not be a P-matrix.

To further illustrate, assume the game has benefit function
bi(x) = 1 − exp(−x), and unit costs of effort c1 = 1

e and
c2 = 1√

e
. Let ϵ = 1, b = 1, κ = 0.5. Then, layer α has

a unique Nash equilibrium; when a > 3, this unique NE is

x∗ =

(
0
0.5

)
.

For the multiplex, I + G =

(
1 1

2 (a− 1)
1
2 (

1
a + 1) 1

)
. This

is a P-matrix if and only if a ≤ 2 +
√
5. In particular,

• If a = 4, I + G is a P-matrix, and the multiplex game

will have a unique Nash equilibrium x∗ =

(
0
0.5

)
.

• If a = 5, I +G is not a P-matrix, and the multiplex has

two Nash equilibria: x∗ =

(
0
0.5

)
or x∗ =

(
1
0

)
.4

To see why this example emerges, note that a captures the
influence of agent 2 on agent 1 in network α. This single-layer
network is structured such that when agent 2’s influence on
agent 1 increases, the reverse influence from agent 1 on agent 2
decreases proportionally, so that the game matrix can remain a
P-matrix. In contrast, once the two networks are joined, when
a increases, part of the reverse influence, 1−κ

b , is constant and
does not respond to the increase in a. This can break the P-
matrix property of the game matrix, and as such, the guarantee
on the equilibrium uniqueness. In this example, it leads to the
dependence of j on i to increase along with the dependence
of i on j, reaching a level that allows either agent to free-ride
on the other’s effort in the multiplex game, and resulting in
the two possible NE.

A. When is I +G not a P-matrix?

We now generalize the intuition from Example 1 to identify
conditions under which I +G is not a P-matrix. In particular,
note that I+G is a P-matrix if and only if the determinant of
all its principal minors are positive. The following proposition
identifies conditions under which at least one of the principal
minors has a non-positive determinant.

Proposition 1. Let M l
ij be the 2 × 2 minor obtained by

removing all rows and columns except i and j from the
interdependency matrix of layer l. If there exists a pair of
agents i and j such that

aij
bij

(1− det(Mα
ij)) +

bij
aij

(1− det(Mβ
ij))

≥ 2 +
κ

1− κ
det(Mα

ij) +
1− κ

κ
det(Mβ

ij) , (4)

4Note that the P-matrix condition is a guarantee that the network structure
will lead to an NE that is unique independent of the realizations of benefit and
cost functions. When the condition fails to hold, there can still be benefit and
cost realizations under which the NE is unique. For instance, in this example,
if we had c2 = 1

e
, the multiplex with a = 5 would have also had a unique

NE x∗ =

(
0
0.5

)
.



then the multiplex network is not guaranteed to have a unique
Nash equilibrium. That is, there are cost and benefit functions
for which the multiplex network either does not have a Nash
equilibrium, or has multiple Nash equilibria.

Proof: Consider any pair of agents, i and j. The principal
minor corresponding to this pair in the multiplex network is

Mij :=

(
1 κaij + (1− κ)bij

κaji + (1− κ)bji 1

)
. A neces-

sary condition for I +G to be a P-matrix is for this principal
minor to have a positive determinant. We can write this
condition in terms of the determinants of the pair of agents’
corresponding principal minors Mα

ij and Mβ
ij in each layer, as

follows:

det(Mij) > 0

⇔ κ2aijaji + (1− κ)2bijbji + κ(1− κ)(aijbji + bijaji) < 1

⇔ aijbji + bijaji < 2 +
κ

1− κ
det(Mα

ij) +
1− κ

κ
det(Mβ

ij)

⇔ aij
bij

(1− det(Mα
ij)) +

bij
aij

(1− det(Mβ
ij))

< 2 +
κ

1− κ
det(Mα

ij) +
1− κ

κ
det(Mβ

ij) (5)

In particular, if (5) is violated for even one pair of agents i
and j, the multiplex will not be guaranteed to have a unique
Nash equilibrium.

It is worthwhile to again note that even if both layers α and
β satisfy the P-matrix condition, so that the sub-determinants
det(M l

ij) are positive, the condition (4) can still hold at
sufficiently large aij (note that the determinant term can be
kept constant by adjusting aji accordingly).

Proposition 1 could also be extended to state conditions
on higher order principal minors (e.g., highlighting that non-
uniqueness can be caused by the change in the nature and
intensity of interactions among a set of three agents).

B. When is I +G a P-matrix?
While as shown in Example 1 and Proposition 1, the sum of

two P-matrices is in general not a P-matrix, there are specific
subclasses of P-matrices which are closed under summation,
as shown in the following proposition.

Proposition 2. For any of the following cases, I + G where
G = κA+ (1− κ)B, κ ∈ [0, 1], will be a P-matrix.

1) A and B are symmetric matrices.
2) I +A and I +B are strictly row diagonally dominant,

i.e.,
∑

j ̸=i |aij | < 1 and
∑

j ̸=i |bij | < 1, ∀i.
3) I+A and I+B are B-matrices, i.e., 1+

∑
j aij > 0 and

1
N (1 +

∑
j ̸=k aij) > aik, ∀i and ∀k ̸= i, and similarly

for B.

Proof:
1) This is true because a symmetric matrix is a P-matrix

if and only if it is positive definite [25], and the sum of
positive definite matrices is positive definite.

2) By the triangle inequality, |κaij+(1−κ)bij | < κ|aij |+
(1 − κ)|bij |. Therefore, we have

∑
j ̸=i |κaij + (1 −

κ)bij | < 1, ∀i, and as such, I + G is strictly row
diagonally dominant as well. by the Gershgorin circle
theorem, all real eigenvalues of a strictly row diagonally
dominant matrix with positive diagonal elements are
positive. The determinant of a matrix is the product of
its eigenvalues, and as for real matrices, the complex
eigenvalues appear in pairs with their conjugates, I +G
has a positive determinant. The same argument holds
for all principal minors of I +G. Therefore, I +G is a
P-matrix.

3) A B-matrix is a subclass of P-matrices [31]. It is easy
to check that given that I+A and I+B are B-matrices,
I +G also satisfies the conditions of a B-matrix, and is
therefore a P-matrix.

Intuition. We delve deeper into the case of symmetric
matrices in the next section. The remaining two cases, row
diagonally dominant and B-matrices, set limits on the influence
of agents on each other. Proposition 2 notes that these limits
will carry over when two networks connect with each other.
In particular, a row diagonally dominant matrix limits the
cumulative maximum influence of neighboring agents on an
agent i’s utility, relative to the agent’s self-influence (here,
normalized to 1). If the externalities received from other agents
are limited in both layers, they will also be limited when layers
are interconnected. B-matrices on the other hand require that
the row averages dominate any off-diagonal entries, meaning
that no one neighbor’s externality on agent i’s utility is
higher than the average of all the other influences the agent
experiences (both self-influence and the externality from the
remaining neighbors). Again, if this is true in both layers, it
will remain true when the two layers are interconnected as
well.

IV. NASH EQUILIBRIA OF MULTIPLEX NETWORKS WITH
SYMMETRIC INTERDEPENDENCY MATRICES

We now turn to the special case of symmetric (undirected)
networks. We begin by noting that the sum of two positive
definite matrices is a positive definite matrix. That is, in
contrast to the general case of Section III, if we know that
two symmetric layers α and β already have structures that
are conducive to unique NE, so will the symmetric multiplex
network emerging from joining them. In light of this, we focus
on identifying situations in which layer α supports a unique
NE, yet the introduction of layer β undermines the guarantee
on the uniqueness of NE of the resulting multiplex.

Specifically, we ask: when is |λmin(G)| ≥ 1? We use the
well known Weyl’s inequalities to answer this question, which
provides bounds on the eigenvalues of the sum of two matrices
in terms of the eigenvalues of the constituent matrices.

Weyl’s inequalities [32]: Let H = H1 + H2, H1, and H2

be n×n Hermitian matrices, with their respective eigenvalues
λi indexed in decreasing order, i.e., λmax = λ1 ≥ λ2 ≥ . . . ≥



λn = λmin. Then, the following inequalities hold:

λj(H1) + λk(H2) ≤ λi(H) ≤ λr(H1) + λs(H2)

s.t. j + k − n ≥ i ≥ r + s− 1 .

We now use these to identify conditions under which the
multiplex is not guaranteed to have a unique NE.

Proposition 3. If

|λmin(B)| ≥ 1

1− κ
(1 + κλmax(A)) ,

then the multiplex network game is not guaranteed to have a
unique Nash equilibrium.

Proof: Since by Corollary 1 we only require a bound on
the minimum eigenvalue of G, we consider Weyl’s inequalities
at i = n, for G = κA+ (1− κB). These are

λmin(G) ≤ min
r,s, s.t. r+s−1≤n

(κλr(A) + (1− κ)λs(B)) . (6)

We now note that tr(G) = 0, and therefore λmin(G) < 0.
As a result, |λmin(G)| ≤ 1 is the same as identifying
conditions under which λmin(G) ≤ −1. Consider the term in
the minimum upperbound of (6) attained at {r = n, s = 1}:

λmin(G) ≤ κλmax(A) + (1− κ)λmin(B) .

If the upperbound above is less than −1, then λmin(G) < −1,
and the multiplex will not be guaranteed to have a unique NE.
Re-arranging the inequality, and noting that λmin(B) < 0 and
λmax(A) > 0 (as the traces for both of these matrices, and
therefore the sum of their eigenvalues, is equal to zero), leads
to the statement of the proposition.

Intuition: The work of Bramoullé, Kranton, and
D’amours [2] was the first to identify that the lowest
eigenvalue of a symmetric network has connections to the
uniqueness of Nash equilibria of games played on that
network. In particular, [2] notes that the lowest eigenvalue is
a measure of the network’s “two-sidedness”, with a smaller
(more negative) lowest eigenvalue being an indication that
agents’ actions rebound more in a network. It is therefore
expected that a layer β with a large |λmin(B)| will introduce
similar effects in the multiplex network. The condition in
Proposition 3 shows that this is indeed the case: when
network β is significantly two-sided, it can undermine the
uniqueness of the equilibrium of the multiplex network. Also,
as expected, for large κ (when layer β is less important
in determining agents’ payoffs), λmin(B) will have less
influence on the NE uniqueness.

More interestingly, the severity of rebound effects due to
network β (its λmin) are compared against the extent of
connectivity of network α (its largest eigenvalue λmax). In
words, Proposition 3 states that if the connectivity of layer
α (as characterized by its largest eigenvalue) is not high
enough to mute the ups and downs introduced by layer β (as
characterized by its smallest eigenvalue), then the multiplex
will have either no equilibrium or multiple equilibria for some
game instances.

A. Special cases: regular, tree, random, and scale-free graphs

It is known that for a d-regular network M (a network
where every node has degree d), we have λmax(M) = d, and
λmin(M) ≥ −d, with equality when the network is bipartite
and triangle-less [33]. Assume that the new layer β is one such
dβ-regular, triangle-less network, so that λmin(β) = −dβ . For
simplicity, set κ = 1

2 . We now vary network α to further
elaborate on Proposition 3.

a) Regular network: If layer α is a dα-regular network,
the condition in Proposition 3 reduces to:

dβ ≥ 2 + dα .

This means that if the new layer β surpasses the incumbent
layer α by two degrees (so that it has sufficiently more edges
than layer α), the new layer can undermine the uniqueness of
the multiplex.

b) Tree network: For a tree network, λmax(A) ≥
√
∆

where ∆ is the largest vertex degree, with the minimum value
attained for the star K1,∆ [34]. Therefore, if layer α is a K1,dα

star network, the condition in Proposition 3 reduces to:

dβ ≥ 2 +
√

dα .

We observe that layer β can more easily force the multiplex
out of having a unique NE when α is a star network than when
it is a regular network. Intuitively, this is because a star graph
has lower connectivity than a regular graph, and therefore has
a lower capacity to mute the rebounds introduced by layer β.

c) Random network: For a non-sparse random network
G(N, p), with a constant p, λmax(G(N, p)) has a normal
distribution with expected value (N−1)p−(1−p) and variance
2p(1−p) [35]. Assume that layer α is a random network with
the above average maximum eigenvalue. Then, the condition
in Proposition 3 reduces to:

dβ ≥ 2 + (N − 1)p− (1− p) .

This indicates that higher link probability p and larger potential
number of neighbors N make layer α more connected, and
make it harder to ascertain that layer β can undermine the
multiplex NE uniqueness.

d) Scale-free network: Assume next that layer α is a
scale-free network; these are networks in which the degree
distribution follows a power law, and have been argued
to provide close descriptions of real-world networks [36],
[37]. From [38], we know that for a scale-free network
α, λmax(A) ∼ N1/4 at large N . Then, the condition in
Proposition 3 reduces to:

dβ ≥ 2 +N1/4.

Given this, if dβ = O(Nk) for k > 0.25, layer β can
overtake the connectivity of the scale-free network α. Further,
comparing the conditions for scale-free and random networks
α, we can see that the right-hand side of the condition in the
random network case grows much faster. Intuitively, this is
because in random networks nodes have comparable degrees
(and when all of them grow with N , this increases the network



Fig. 1. Change in the maximum and absolute of minimum eigenvalues of a
scale-free network as the number of nodes grows.

connectivity); in contrast, the degree increase in scale-free
networks when N increases can be due to the emergence of
hubs, which do not offer the same extent of connectivity.

Finally, assume both layers α and β are scale-free. Figure 1
illustrates the changes in the (size of the) minimum and
maximum eigenvalues of a scale-free network as a function
of its number of nodes N , averaged over 100,000 randomly
generated scale-free networks. We conclude that when large
scale-free networks are joined into a multiplex network, it is
harder to ascertain that one layer can undermine the multiplex
NE uniqueness, as the lowest eigenvalue grows much slower
than the largest eigenvalue.

V. CONCLUSION AND DISCUSSION

We have proposed a multiplex network game to study
networked strategic interactions when agents are affected by
different modalities of information and interactions simulta-
neously. This model enabled us to explore how the prop-
erties of the constituent networks undermine or support the
uniqueness of the Nash equilibrium of multiplex games. At
a technical level, answering these questions required us to
understand how the determinant (and lowest eigenvalue) of
the sum of two matrices relates to the determinants (and
eigenvalues) of the two matrices; neither the determinant nor
the eigenvalues of the sum of two matrices have closed-form
expressions in general. Our results have therefore leveraged
existing inequalities/bounds (e.g., Weyl’s inequality) to find
(sufficient) negative results, and provided positive answers for
special matrix subclasses.

In particular, we have shown that even if the constituent
networks are guaranteed to have unique Nash equilibria in
isolation, the resulting multiplex need not have a unique
Nash equilibrium. We have also identified certain subclasses
of networks wherein guarantees on the uniqueness of Nash
equilibria on the isolated networks lead to the same guarantees
on the multiplex network game. These include row diagonally
dominant and B-matrices, both of which set limits on the
influence of agents on each other. We further showed that not
only the lowest eigenvalue of the individual layers (which has
been shown to be of importance in guaranteeing uniqueness
of NE in single-layer network games), but also their largest

eigenvalues, play a role in determining the uniqueness of the
NE of a multiplex game.

Together, our findings shed light on the reasons for the
fragility of the uniqueness of equilibria in multiplex networks.
They can also provide potential interventions to alleviate them.
For instance, we noted that the connectivity of one layer
(as characterized by its largest eigenvalue) needs to be high
enough to mute the ups and downs introduced by another
layer as a necessary condition for equilibrium uniqueness. This
suggests that a policy designer could focus their interventions
on increasing the connectivity of one layer of a multiplex
(e.g., one social network or industry) in an effort to mute the
“bipartite-ness” introduced by another.

Moving beyond uniqueness, existing work [2], [15], [17]
have argued that the lowest eigenvalue of a single-layer
network can also help characterize the stability of its Nash
equilibrium against different forms of perturbations. A similar
exploration of the stability of NE of multiplex networks, as
well as the study of multiplex network games with non-linear
best-responses, remain as directions of future work.
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