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Abstract— We consider the provision of non-excludable pub-
lic goods on a network of interdependent strategic users. We
study three different equilibria of these games, namely the Nash
equilibrium, socially optimal, and exit equilibrium profiles. We
identify properties of the interdependence graph that guarantee
the existence and uniqueness of these equilibria. We further
establish a connection between users’ centralities in their
interdependence network, and their efforts at different interior
equilibria of these games. These characterizations separate the
effects of incoming and outgoing dependencies, as well as the
influence of paths of different length, on users’ effort levels.
We discuss some conceptual and practical implications of this
centrality-effort connection.

I. INTRODUCTION

Consider a social or economic network of interdependent
entities, whose actions determine the level of provision of a
non-excludable public good. Examples include neighborhood
levels in cities deciding on creation of new parks or libraries
[1], neighboring towns determining whether to invest in
measures for reducing pollution [2], businesses in an industry
choosing their R&D expenditure [3], and interdependent or-
ganizations investing in security measures (whether physical
security [4] or cyber-security [5]).

These instances are similar in that they concern the
provision of a good (a public project, clean air, research
and innovation, and security, respectively) by entities whose
investments in the good not only benefit themselves, but also
provide positive externalities to (some or all) other users
in their network. It is well-known [6] that when users are
strategic, the level of provision of these public goods is far
from its socially optimal state, most often due to under-
investment by users. This is because strategic users do not
account for the effect of their choices on the welfare of
their network, and may further reduce investments by relying
on the externality of others’ actions. Optimal provision of
public goods therefore calls for the design of appropriate
regulations, policies, and/or incentive mechanisms.

The design of policies or incentives in the aforementioned
examples is further complicated by the fact that the positive
externalities resulting from the provision of the goods are

non-excludable.1 That is, even if a user does not cooperate
in improving the provision of the public good, she can still
benefit from the externality generated by her peers in the
network. With this in mind, to understand the provision
of non-excludable public goods, and to design adequate
incentive mechanisms for achieving their optimal levels, we
need to study users’ actions at the state of anarchy, as well
as their social welfare maximizing actions, and their choices
when deviating from any proposed mechanism.

To this end, in this paper, we consider weighted effort
public good provision games, in which users’ benefits from
the public good are determined by a weighted sum of their
own effort and the efforts of their neighbors in the network.
This model is commonly adopted (see Section V), and is
of particular interest as it can capture varying degrees and
possible asymmetries in the influence of users’ efforts on
one another. We study the existence and uniqueness of
three different effort profiles in these games, namely the
Nash equilibrium, socially optimal efforts, and exit equilibria
(defined shortly).

Specifically, we provide a characterization of users’ social
welfare maximizing efforts in these games; these profiles
can be implemented using appropriate incentive mechanisms,
e.g., the Pivotal (VCG) or Externality mechanisms [10]. In
conjunction with such mechanisms, it is of interest to analyze
users’ voluntary participation constraints. We emphasize
that given the non-excludable nature of the studied goods,
voluntary participation is different from the commonly used
individual rationality constraint. To further clarify, note that
when non-participating users can be fully excluded (e.g.,
are not allocated bandwidth in the cellular network [9]),
individual rationality assesses participation based on users’
utilities before the introduction of a mechanism; i.e., against
the Nash equilibrium. However, when the good is non-
excludable, voluntary participation assesses a user’s interest
in the mechanism given that despite opting out, the user can

1We note there according to an alternative definition, see e.g. [7, Chapter
23], all public goods are assumed non-excludable; with excludable non-
rivalrous goods referred to as club goods. However, it is more common
in the literature, especially in the engineering applications’ literature, to
make the coarser distinction of public vs. private goods based on rivalry
alone. Examples include Samuelson’s seminal work on public goods [8], the
definition of Mas-Colell, Whinston, and Green [6, Chapter 11.C], and [9] in
the engineering applications’ literature. We adopt this coarser categorization,
and further distinguish based on excludability when needed.



still benefit from the externality of improved efforts by other
participating users (e.g. not installing an anti-virus on her
device but interacting with other computers that have done
so). Hence, we use the concept of exit equilibria for the
study of voluntary participation constraints; these equilibria
will refer to the Nash equilibrium of the game between a user
who unilaterally opts out of a mechanism, and the remaining
users who implement the socially optimal solution in their
new environment.2

In addition, we establish a connection between users’
positions in their interdependence network (in terms of their
centrality), and their effort levels at different investment
profiles of these public good provision games. A graph-
theoretical characterization of users’ efforts in these games
is of both conceptual and practical importance. On one hand,
this connection allows for a comparative statics study; i.e.,
identifying the effects of changing the network structure on
equilibrium efforts (for a given equilibrium concept). On
the other hand, providing such characterization for different
equilibria, on a fixed network, can serve as a tool in the
problem of mechanism design.

The main contributions of this work are therefore the
following. First, we identify properties of the interdepen-
dence network that guarantee the existence and uniqueness of
three effort profiles (namely, Nash equilibrium, socially opti-
mal, and exit equilibrium profiles) in public good provision
games. Second, we establish a centrality-effort connection
for these effort profiles. These characterizations separate the
effects of incoming and outgoing dependencies, as well as
the influence of paths of different length, on users’ effort
levels. Our selected centrality measure, the alpha-centrality,
is a different (generalized) version of the measures used in
the existing literature, which has mainly focused on charac-
terizing Nash equilibria in public good provision problems
(see Section V for more discussion). Third, this work is
the first to study exit equilibria for analyzing users’ actions
under unilateral deviation from social welfare maximizing
strategies, and to provide a graph-theoretical characterization
of these exit equilibrium profiles.

The remainder of this paper is organized as follows. In
Section II, we present a model for public good provision
games, and formally describe the equilibrium concepts of
interest. We find conditions for existence and uniqueness
of these equilibria in Section III. Section IV establishes
the centrality-effort connection in these games, followed by
intuitive interpretation and numerical examples. We review
the literature most relevant to this work in Section V, and
conclude in Section VI with directions for future work.

II. MODEL AND PRELIMINARIES

A. Weighted effort public good provision games

Consider a set of N strategic users constituting the nodes
N of a directed network G = (N , E). Each user i ∈ N

2We note that similar exit equilibrium concepts can be defined for
coalitions and group deviations. The study of such equilibria is a direction
for future work.

can choose to make an investment, or exert some effort
xi ∈ [0,∞). Denote the vector of all users’ efforts by
x := (x1, x2, · · · , xN )T .

We assume the utility of user i in G at a vector of efforts
x is given by:

ui(x) := Vi(

N∑
j=1

aijxj)− cixi . (1)

Here, the value or benefit function Vi : [0,∞) → [0,∞)
denotes the benefit to user i from the effort profile x. The
argument of the benefit function, (Ax)i :=

∑N
j=1 aijxj , is

the effective effort experienced by user i, and is given by a
weighted sum of some or all of the N users’ efforts, with the
coefficients aij determining the extent of i’s dependencies on
different users. We assume the self-dependence coefficients
are normalized so that aii = 1,∀i. The interdependence
coefficients aij ≥ 0,∀i 6= j, are interpreted relative to 1, and
determine the influence of other nodes on node i’s benefits,
with aij > 0 when (j → i) ∈ E .

Finally, for each user i, the cost of exerting effort is
assumed linearly increasing in xi, with the unit cost (of
effort) denoted by ci > 0.

We make the following assumptions on the functions Vi(·):
Assumption 1: The function Vi(·) is twice differentiable,

strictly increasing, and strictly concave, ∀i. In addition,
V ′i (0) > ci,∀i.

In addition to allowing mathematical tractability, these
assumptions entail the following intuition. By the mono-
tonicity assumption, users’ benefits increase as more effort
is exerted. However, the concavity assumption reflects di-
minishing marginal benefits: while initial exertion of effort
increases utilities more considerably, the marginal benefit
from additional effort is overall decreasing. The last require-
ment, V ′i (0) > ci, ensures that all users will benefit from
experiencing a non-zero effective effort.

Notation: Let A = [aij ] denote the dependence matrix.
We further derive the i-removed dependence matrix A−i
from A by setting the entries in the row and column
corresponding to i (except for the diagonal element) to zero.
Formally, set [A−i]ik = [A−i]ki = 0,∀k 6= i. All other
entries remain unchanged, i.e., [A−i]jk = ajk,∀j 6= i, k 6= i,
and [A−i]ii = aii. These matrices are illustrated below:

A :=


a11 a12 · · · a1N
a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

 ,

A−i :=



a11 ··· a1(i−1) 0 a1(i+1) ··· a1N

...
. . .

...
...

...
. . .

...
a(i−1)1 ··· a(i−1)(i−1) 0 a(i−1)(i+1) ··· a(i−1)N

0 ··· 0 aii 0 ··· 0
a(i+1)1 ··· a(i+1)(i−1) 0 a(i+1)(i+1) ··· a(i+1)N

...
. . .

...
...

...
. . .

...
aN1 ··· aN(i−1) 0 aN(i+1) ··· aNN

 .

We let B = A − I be the adjacency or interdependence
matrix, and define the i-removed interdependence matrix
B−i = A−i − I .



TABLE I
SUMMARY OF NOTATION

Symbol Description
A Dependence matrix
A−i i-removed dependence matrix
B Adjacency/interdependence matrix
B−i i-removed interdependence matrix
c Vector of unit effort costs
V Vector of benefit functions
∇V 1st derivatives of benefit functions
∇V−1 Inverse of 1st derivatives of benefit functions

We use c = [c1, · · · , cN ]T and V = [V1(·), · · · , VN (·)]T
to denote the vector of unit effort costs and benefit functions,
respectively. In addition, denote the vector of first derivatives
of the benefit functions by ∇V = [V ′i (·)] = [∂Vi(x)/∂x],
and the vector of the inverse of these derivatives by ∇V−1 =
[(V ′i )

−1(·)]. The notation is summarized in Table I.
We interpret V(x) as the vector of functions V evaluated

element-wise at the vector of variables x, i.e, its ith entry is
Vi(xi).

B. Equilibria in weighted effort games

The set of users N , their actions xi ≥ 0, and their
utility functions ui(x) given in (1), constitute a weighted
effort public good provision game. Our goal in this paper
is to identify properties of the interdependence graph that
ensure the existence and uniqueness of equilibria in these
games, and graph theoretical interpretations of users’ actions
in different effort profiles. In particular, we are interested in
the study of three effort profiles:

a) Nash equilibrium x̃: these are the effort levels
realized at the status quo of the full information game,
in which strategic users simultaneously choose their effort
levels to maximize their payoff given others’ actions. At the
Nash equilibrium, no user has an incentive to unilaterally
deviate from her action. Formally:

x̃i = argmax
x≥0

ui(x, x̃−i) ,∀i. (2)

b) Socially optimal solution x∗: this is the effort
profile maximizing the sum of all users’ utilities. Formally,

x∗ = argmax
x�0

N∑
i=1

ui(x) . (3)

The implementation of these effort profiles can be incen-
tivized by using appropriate tax-based mechanisms [10], such
as the Pivotal (VCG) [11] or Externality [12] mechanisms.

c) Exit equilibria x̂i,∀i: the participation of users in
a mechanism that incentivizes the socially optimal solution
to a public good provision game is affected by their outside
options. In particular, as mentioned in Section I, when the
public good is non-excludable, a user can opt out from the
mechanism while still benefiting from the externality of other
users’ (possibly reduced) efforts, and best-responding with
the choice of an effort level accordingly. To study the effort
profiles realized as a result of such unilateral deviations, we
propose the concept of exit equilibrium. Formally, the exit

equilibrium x̂i is a Nash equilibrium of a simultaneous move
game between the outlier i and the remaining participating
users (who implement the socially optimal solution for their
N − 1 user network):

x̂i−i = arg max
x−i�0

∑
j 6=i

uj(x−i, x̂
i
i) ,

x̂ii = argmax
xi≥0

ui(x̂
i
−i, xi) . (4)

We now proceed to the study of existence and uniqueness
of the aforementioned equilibrium concepts in public good
provision games.

III. EXISTENCE AND UNIQUENESS OF EFFORT PROFILES

In this section, we first show that the optimality conditions
for solving the optimization problems of Section II-B can be
re-written as Linear Complementarity Problems (LCP) [13].
A general LCP is determined by a vector-matrix pair (b, A),
and is given by:

y = Ax+ b, yTx = 0, x,y � 0 .

Linear complementarity problems were first proposed
as a method to unify the study of linear and quadratic
programming, and have found applications in the study
of market equilibrium, finding optimal stopping times in
Markov chains, and developing efficient algorithms for solv-
ing nonlinear programming problems [13], [14]. By finding
an equivalent formulation, we will leverage results from
the LCP literature to establish conditions for existence and
uniqueness of effort profiles in our public good provision
games.

A. The LCP Formulation

First, consider the Nash equilibrium profile found through
the system of equations (2). Let b̃i denote the aggregate effort
level at which a user i’s marginal benefit is equal to her
marginal cost; i.e., V ′i (b̃i) = ci. Then, a Nash equilibrium
profile x should satisfy:

(Ax)i = b̃i if xi > 0 ,

(Ax)i ≥ b̃i if xi = 0 .

The above can be written as the following LCP:

y = Ax− b̃

yTx = 0 (5)
x � 0 ,y � 0

Any profile (x̃, ỹ) satisfying (5) is a Nash equilibrium of
the game defined in Section II. Note that the variables yi
determine the slack for users who do not exert effort.

We next consider the socially optimal investment profile
satisfying (3). A solution x should satisfy:

N∑
j=1

ajiV
′
j ((Ax)j) = ci, if xi > 0 ,

N∑
j=1

ajiV
′
j ((Ax)j) ≤ ci, if xi = 0 .



Define the efforts b∗i as those satisfying V ′i (b
∗
i ) =

((AT )−1c)i. Then, the above optimality conditions are
equivalent to:

(Ax)i = b∗i , if xi > 0 ,

(Ax)i ≥ b∗i , if xi = 0 .

The above can be written as the following LCP:

y = Ax− b∗

yTx = 0 (6)
x � 0 ,y � 0

Any profile (x∗,y∗) satisfying (6) is a socially optimal
solution of the game defined in Section II. Note that this
LCP has the same matrix A as that in (5), but a different
vector b.

Similarly, to find an exit equilibrium xi of the game based
on (4), in which user i has unilateraly opted out of a given
mechanism, we have to find a solution to the following
system of equations:∑

j 6=i

ajkV
′
j ((Ax

i)j) = ck, for k 6= i, if xik > 0 ,∑
j 6=i

ajkV
′
j ((Ax

i)j) ≤ ck, for k 6= i, if xik = 0 ,

V ′i ((Ax
i)i) = ci, if xii > 0 ,

V ′i ((Ax
i)i) ≤ ci, if xii = 0 .

Defining the efforts b̂ik as those satisfying V ′k(b̂
i
k) =

((AT−i)
−1c)k, and following similar steps, the above can be

written as the following LCP problem:

y = Axi − b̂i

yTxi = 0 (7)

xi � 0 ,y � 0

Any profile (x̂i, ŷi) satisfying (7) is an exit equilibrium
solution under user i’s unilateral deviation for the game
defined in Section II.

B. Existence and Uniqueness

Based on the LCP formulations derived in the previous
section, the conditions for the existence and uniqueness
of the equilibria of public good provision games will be
equivalent to those of the corresponding LCP problems.

Consider a general LCP (b, A) given by:

y = Ax+ b, yTx = 0, x,y � 0 .

We further use the following definitions:
Definition 1: A square matrix A is a P-matrix if all its

principal minors (i.e., the determinant of smaller square sub-
matrices obtained from A by removing one or more of its
rows and columns) are positive.

Definition 2: A matrix A is strictly diagonally dominant
if
∑
j 6=i |aij | < |aii|, ∀i.

We will use the following existence and uniqueness result
from the LCP literature, see e.g. [13, Theorem 3.3.7].

TABLE II
CLOSED FORM OF NE, SO, AND EES

Profile Closed form
Nash equilibrium x̃ = A−1∇V−1(c)
Socially optimal x∗ = A−1∇V−1((AT )−1c)
Exit equilibrium x̂i = A−1∇V−1((AT−i)

−1c)

Theorem 1: The LCP (b, A) has a unique solution for all
b ∈ RN if and only if A ∈ RN × RN is a P-matrix.

The following theorem establishes conditions for existence
and uniqueness of equilibria of the public good provision
games studied in this paper.

Theorem 2: If the dependence matrix A is strictly diago-
nally dominant, then the public good provision game defined
in Section II has unique Nash equilibrium, socially optimal,
and exit equilibria.

Proof: We first show that if A is strictly diagonally
dominant, then it is a P-matrix. This is because by the
Gershgorin circle theorem, for a strictly diagonally dominant
matrix with positive diagonal elements, all real eigenvalues
are positive. Following a similar argument, all real eigen-
values of all sub-matrices of A are also positive. Since the
determinant of a matrix is the products of its eigenvalues, and
as for real matrices, the complex eigenvalues appear in pairs
with their conjugate eigenvalues, it follows that A, as well
as all its square sub-matrices, have positive determinants.
Therefore, A is a P-matrix. Using Theorem 1 we conclude
that all the LCPs derived in (5), (6), and (7), have unique
solutions, regardless of the value of b.

C. Closed form of interior NE, SO, and EEs

In the remainder of the paper, we will focus on game
environments for which at any equilibrium, all entries of the
effort profile are strictly positive.3 Intuitively, this require-
ment implies that any user, regardless of externalities, will
still benefit from exerting some effort herself. Technically,
this assumption allows us to derive closed forms for the in-
terior solutions of the corresponding optimization problems.
Table II provides the closed form of interior solutions of the
three aforementioned effort profiles. The derivation follows
by substituting for b̃,b∗, b̂i and setting the corresponding
slack variables y to zero in the LCP formulations of Section
III-A.

IV. THE CENTRALITY-EFFORT CONNECTION

A. An overview of centrality measures

Several measures of node centrality have been proposed
throughout the graph theory and network analysis litera-
ture. A commonly used measure, degree centrality, declares
the node with the highest number of links as the most
central. In contrast to degree centrality and other similar
measure, another class of measures propose accounting for

3Intuitively, it is sufficient to have small enough interdependence coeffi-
cients aij , ∀j 6= i, or to focus on sufficiently sparse networks. Identifying
conditions that guarantee the existence of interior effort profiles remains as
a direction for future work.



the importance of the connections rather than the number of
connections alone. We are interested in the latter family of
measures, and specifically, the alpha-centrality measure.

The alpha-centrality measure was introduced by Bonacich
and Lloyd in [16], primarily as a centrality measure that
is applicable to networks with asymmetric relations. It is
defined as follows. Let B be the adjacency matrix of a
network, with bij determining the dependence of node i
on j. Assume each node’s centrality, xi, is influenced by
the centrality of her neighbors; this leads to an eigenvector
centrality measure, x = Bx. Alpha-centrality generalizes
this measure by allowing nodes to also enjoy an exogenous
source of centrality e. As a result, the vector of alpha-
centralities satisfies:

x = αBx+ e .

Here, α determines the tradeoff between the importance of
the endogenous and exogenous centrality factors. The vector
of alpha-centralities is therefore given by:

calpha(B,α, e) = (I − αB)−1e . (8)

The alpha-centrality measure is closely related to the
centrality measure proposed in the seminal work of Katz
[17]. Katz’ measure defines a weighted sum of powers of
the adjacency matrix B as an indicator of nodes’ importance;
intuitively, longer paths are weighed differently (often less
favorably) in determining nodes’ centralities. Formally, the
Katz’ measure is given by:

ckatz(B,α) = (

∞∑
i=1

αiBi)1 ,

where α is an attenuation factor. In particular, if α < 1
|λ1(B)|

(where λ1(B) is the largest eigenvalue of B), this infinite
sum converges to (I − αB)−1 − I . Therefore:

(

∞∑
i=1

αiBi)e = (−I +
∞∑
i=0

αiBi)e = (−I + (I − αB)−1)e .

(9)

Comparing (8) and (9), we conclude that the parameter
α in alpha-centrality measures can be similarly interpreted
as a weight assigned to the paths of different length in
determining the effect of endogenous centralities on the
overall centrality of a node.4

4Alpha centralities are also similar to the measure introduced earlier
by Bonacich in his seminal work [18]. Formally, Bonacich’s centrality is
defined as cbonacich(R, β, α) = β(I − αR)−1R1. Here, R is a symmetric
matrix of relationships, with main diagonal elements equal to zero. The
parameter β only affects the length of the final measures, and has no
network interpretation. The parameter α on the other hand can be positive
or negative, and determines the extent and direction of influences. On
symmetric matrices, this measure is essentially equivalent to Katz’s measure
as well; in fact, ckatz(R,α) =

∑∞
i=1 α

iRi1 = αcbonacich(R,α, 1).
To summarize, taking the three measures on a symmetric matrix A, and

setting e = 1 for the alpha-centralities, we have:

calpha(A,α,1) = 1 + αcbonacich(A,α, 1) = 1 + ckatz(A,α) .

Therefore, in essence, alpha-centrality generalizes Bonacich and Katz cen-
tralities, allowing for vectors of exogenous status e.

B. Effort profiles as alpha-centralities

Using alpha-centrality, we can describe the interior Nash
equilibrium, socially optimal, and exit equilibrium profiles of
public good provision games. This can be done by replacing
A = I +B in Table II, and comparing the expressions with
(8). The results are summarized in Table III.

TABLE III
NE, SO, AND EES AS NODE CENTRALITIES

Profile alpha-centralities
x̃ calpha

(
B,−1,∇V−1(c)

)
x∗ calpha

(
B,−1,∇V−1

(
calpha(B

T ,−1, c)
))

x̂i calpha

(
B,−1,∇V−1

(
calpha(B

T
−i,−1, c)

))

These centrality-based formulations of effort profiles allow
for a better understanding of users’ actions in different effort
profiles. In particular, we make the following observations.

1) A comparison across equilibria: First, note that the
outer centrality measures – determining users’ efforts in the
three equilibria – differ only in the vector of exogenous
status. These vectors can be interpreted as efforts at which
users’ marginal costs equal their marginal benefits. This is
easily observable in ẽ := ∇V−1(c) at the Nash equilibrium.

For the socially optimal solution on the other hand, e∗ :=
∇V−1

(
calpha(B

T ,−1, c)
)

indicates that users’ marginal
costs now equal a weighted version of all users’ costs. This is
to be expected, as in a socially optimal solution, users will be
accounting for the externality of their actions when making
optimal effort decisions, hence a modified cost perception.

Finally, for user i’s exit equilibrium, we get êi :=
∇V−1

(
calpha(B

T
−i,−1, c)

)
; i.e., the equilibrium costs are

evaluated on the i-removed adjacency matrix B−i, indicating
that user i’s interest no longer influences the participating
nodes’ cost perceptions.

Based on these observations, we will henceforth refer to
the argument z of the∇V−1(z) functions as users’ perceived
costs. Note that the vectors of perceived costs also appear
as the vectors b in the corresponding LCP formulations of
Section III-A.

2) Effect of incoming and outgoing dependencies: Next,
we observe that the perceived costs at the socially opti-
mal and exit equilibria are the alpha-centralities of nodes,
calculated on the transpose of the appropriate adjacency
matrices. Intuitively, this implies that a user j has to consider
her outgoing influences bkj (for participating users only) in
determining perceived costs; i.e., other users’ dependence on
her.

On the other hand, note that the outer alpha-centrality mea-
sures are all calculated on the original adjacency matrix B,
regardless of the equilibrium concept. This means that a user
j will be considering all incoming influences bjk – user k’s
participation and the solution implemented notwithstanding
– as all other users can provide positive externality to user
j regardless.



3) The interpretation of α: Finally, we note that all alpha
parameters in these measures are α = −1.5 Considering
alpha’s interpretation as a weight for paths of different length,
this implies that paths of odd length are weighed positively,
while those of even length are weighed negatively. This
is consistent with users’ actions in public good provision
games; e.g., a user will decrease her effort in response
to an immediate neighbor’s increased effort; however, she
will increase her effort in response to a neighbor two-hops
away increasing effort. A similar interpretation applies to the
alpha-centralities determining perceived costs.

C. Numerical Examples
In this section, we illustrate the results of Table III and

the ensuing intuition through numerical examples.
1) Comparison across equilibria on a given network: We

start by considering the 4-node star network of Fig. 1. We
index the center as user 1, and the top user as user 4. All
users are assumed to have equal benefit functions Vi(x) =
1− exp(−x),∀i, and equal unit costs of effort ci = 0.1,∀i.
We further assume a symmetric 0.1 dependence between the
center and the leaf nodes. We use the formulas in Table III
to find the different effort profiles in this network, and make
the following observations.

First, comparing users’ efforts at any given profile (the
numbers inside the nodes) illustrates how users’ efforts are,
as expected, consistent with the positive externalities avail-
able to them as a result of their centrality in the network. In
particular, by being situated in a more central position in the
network, user 1 can benefit from high positive externalities.
This is due to the availability of 3 paths of odd length, which
given α = −1, decrease user 1’s alpha-centrality (the outer
alpha-centrality in Table III). Hence, compared to other users,
user 1 exerts lower effort at any of the effort profiles.

Next, we take a closer look at the vectors of perceived
costs. First note that the vector of perceived costs at the
socially optimal solution is modified according to nodes’
alpha-centralities. In particular, as user 1 again has a lower
alpha-centrality (the inner alpha-centrality in Table III), it
has a lower perceived cost compared to other nodes. A lower
perceived cost results in a higher exogenous status (due to the
concavity of the benefit functions), which in turn translates to
an increased outer alpha-centrality for the user. This effect is
reflected in the considerable improvement of user 1’s effort
from the Nash equilibrium to the socially optimal profile.

Note also that at the exit equilibrium, the perceived cost
of the outlier (last entry of ĉ4) remains unchanged, as this
user only perceives her own cost after exiting. The perceived
costs by the other users at this exit equilibrium are also higher
than that of the socially optimal solution, as the participating
users no longer account for the effect of their choices on the
welfare of the deviating user. Accordingly, the effort levels of
the participating users have decreased at the exit equilibrium.

5Given α = −1, the condition α < 1
|λ1(B)| holds for all adjacency

matrices B. Therefore, the alpha-centralities can be interpreted as the limit
of a weighted sum of powers of the adjacency matrix, and the interpretation
of α as a weight on paths of different length in applicable (see Section IV-
A).
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Fig. 1. Effort profiles (numbers inside nodes) and vectors of perceived
costs across different effort profiles on a given network.

2) Effects of incoming dependencies: We next consider
the 4-node network illustrated in Fig. 2. We again index
the center user as 1, and assume identical benefit functions
Vi(x) = 1 − exp(−x),∀i, and equal unit costs of effort
ci = 0.1,∀i for all users. The network of the top row
assumes a 0.1 dependence of leaf nodes on the center, while
the network of the bottom row assumes an increased 0.3
dependence on user 1. The Nash equilibrium and socially
optimal profiles, as well as the vector of equivalent costs at
the socially optimal solution, are illustrated in Fig. 2.

We immediately observe that the cost perceived by user 1
at the socially optimal solution is considerably lower in the
bottom network. This is due to the fact that when the weight
of incoming links to the center node increases, the inner
alpha-centrality calpha(B

T ,−1, c) decreases (note that this
inverse relation is a consequence of α = −1). Consequently,
to maximize welfare, user 1 is required to exert much higher
effort in the bottom scenario as compared to the top network.

We conclude that, as the inner alpha-centralities of Table
III suggest, users’ cost perceptions, and consequently their
optimal effort levels, are highly affected by their incoming
dependencies. It is also interesting to note that in the bottom
network, the dependence of users on the center (and hence
the center’s efficiency in providing the good) is so high that
the leaves are required to decrease efforts to reach a welfare
maximizing solution.

V. RELATED WORK

In the economic applications’ literature, the work in [3],
[19], [1] establish connections between the Nash equilibrium
efforts and the interdependence graph in public good provi-
sion environments. In [3], Bramoulle and Kranton introduce
a network model of public goods (a special case of the model
considered herein), and study different features of its Nash
equilibria. Specifically, it is shown that these games always
have a specialized Nash equilibrium – one in which users
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Fig. 2. Effects of incoming and outgoing dependencies.

are either specialists exerting full effort, or free-riders – and
that such equilibria correspond to maximal independent sets
of the network graph. In contrast, our focus in this paper
is on a graph-theoretical characterization of non-specialized,
or distributed, Nash equilibria (as well as other distributed
effort profiles).

Similarly, Ballester et al. [19] study the (distributed) Nash
equilibrium of a linear quadratic interdependence model, and
relate the equilibrium effort levels to the nodes’ Bonacich
centralities in a suitably defined matrix of local comple-
mentarities. The work in [1] generalizes these results, by
studying existence, uniqueness, and closed form of the Nash
equilibrium in a broader class of games for which best-
responses are linear in other players’ actions. They further
characterize the Nash equilibrium in terms of an expression
containing a generalized form of the Katz centrality measure.
In addition to studying a different interdependence model
and centrality measure, our work differs in that it focuses
not only on the Nash equilibrium, but also on other effort
profiles.

The current paper is also closely related to the work of
Elliott and Golub in [2], which focuses on implementation
of Pareto efficient public good outcomes, rather than the
Nash equilibria on a given network. The authors define a
benefits matrix for any given network graph; an entry Bij
of the matrix is the marginal rate at which i’s effort can
be substituted by the externality of j’s action. The main
result of the paper states that efforts at a Lindahl outcome
can be characterized using the eigenvector centrality of this
benefits matrix. The current paper differs from [2] in the
following aspects. In terms of modeling, although [2] does
not require users’ preferences to be separable in costs and
benefits, a user’s action is assumed to be strictly costly for the
user herself; whereas our model allows users to benefit from
their own effort. More importantly, the focus of our work
is on socially optimal solutions, and unilateral deviations
resulting in exit equilibria (required to analyze voluntary

participation), while [2] mainly focuses on Pareto efficiency
and individual rationality, with the study of voluntary partic-
ipation suggested as future work.

In the context of security games, the weighted effort game
model studied herein is similar to the games studied in [20],
[21], [15], [22]. Our model is a generalization of the total
effort model proposed by Varian in his seminal work [20],
and is similar to the effective investment model in [21],
and the linear influence network game in [15], [22]. The
effective investment model in [21] has been considered to
determine a bound on the price of anarchy gap, i.e. the gap
between the socially optimal and Nash equilibrium efforts.
The linear influence models in [15], [22] have been proposed
to study properties of the interdependence matrix affecting
the existence and uniqueness of the Nash equilibrium, as well
as an iterative algorithm for converging to this equilibrium
(however, no graph theoretical interpretation of the Nash
equilibrium has been given). Our results on the existence and
uniqueness of Nash equilibrium in Section III are consistent
with those of [15], [22]. Our work on this model therefore
closes the gap in this literature by studying the effect of the
interdependence network on the existence and uniqueness of
socially optimal and exit equilibrium profiles, and further
provides graph-theoretical interpretations of all three effort
profiles.

VI. CONCLUSION

We have identified conditions on the dependence matrix
that guarantee the existence and uniqueness of different effort
profiles in weighted effort public good provision games.
We further established a connection between users’ posi-
tions in their interdependence network (in terms of alpha-
centralities), and their actions in different interior effort
profiles. These characterizations can be useful in pursuing
several directions. First, the results can be used in designing
tax/subsidy policies. Specifically, the unit costs of effort
could be appropriately taxed/subsidized to modify the vector
of perceived costs, and consequently, arrive at a desired effort
profile.

Second, these characterizations can be used in studying the
performance of specific incentive mechanisms. For example,
it can be shown [10] that the use of a Pivotal (VCG)
mechanism in the provision of a non-excludable public good
can introduce taxes that incentivize the socially optimal effort
profile and guarantee voluntary participation, but may result
in a budget deficit in some instances of the game. The current
work can be continued to study the connection between the
network structure and game instances in which a deficit is
incurred, as well as the size of this deficit.

Finally, extending this framework to study coalitions and
group deviations from incentive mechanisms is an important
direction of future work.
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