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Abstract— We study the problem of providing safety guaran-
tees for dynamic systems of high relative degree in the presence
of state measurement errors. To this end, we propose High-
Order Measurement Robust Control Barrier Functions (HO-
MR-CBFs), an extension of the recently proposed Measurement
Robust Control Barrier Functions. We begin by formally
defining HO-MR-CBF, and identify conditions under which
the proposed HO-MR-CBF can render the system’s safe set
forward invariant. In addition, we provide bounds on the state
measurement errors for which the optimization problem for
identifying the corresponding safe controllers is feasible for all
states within the safe set and given restricted control inputs.
We demonstrate the proposed approach through numerical
experiments on a collision avoidance scenario in presence of
measurement noise using a nonlinear kinematic model of a
wheeled robot. We show that using our proposed control
method, the robot, who has access to only biased state estimates,
will be successful in avoiding the obstacle.

I. INTRODUCTION

Automated Cyber-Physical Systems (CPS) increasingly
perform safety-critical functions in different applications,
such as transportation systems, energy delivery, and health-
care. As such, designing safe controllers for such systems
has been a topic of growing importance and interest.

Among existing approaches to safe control, Control Bar-
rier Functions have gained increasing popularity [1], [2]
due to their ability to assure safety with strong analytical
guarantees using tools from set invariance [3]. Along with
Control Lyapunov Functions (CLFs), they have been shown
to be capable of providing real-time safe control by for-
mulating and solving a Quadratic Program (QP) [4]. They
have been successfully implemented in several applications
including bipedal robots control [5], [6], automotive safety
[1], and machine learning applications [7]–[9]. CBF have
also been extended through several variations; examples
include discrete-time CBF [5] and stochastic CBF [10]. The
most closely related variation to our paper is the High-Order
CBF [11], [12], designed for systems with high relative
degree (formally defined in Section II-C). In particular, many
CBF approaches are only applicable when the constraint has
degree one relative to the dynamics of the system; HOCBF
allow for safe control when this assumption does not hold.

Despite their ubiquity, the vast majority of the existing
works on CBF (and their variants) assume that the controller
has access to perfect state information. However, this is
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often not the case in practice, especially given limitations
in sensing technologies, as well as the rise in cyber attacks
on automated CPS.

In particular, CPS typically consist of a large network
of physical actuators, sensors, and controllers, creating a
vast attack surface, including for launching physical attacks
(e.g., false sensor signals) than can bypass traditional security
mechanisms such as authentication and encryption [13]–[15].
At the lowest level, these attacks manifest themselves as
false input and/or output signals. While outlier and anomaly
rejection algorithms such as the χ2-detector are successful in
raising an alarm at high noise levels, an intelligent attacker
can bypass these algorithms to induce maximum estimation
error without raising an alarm [16]. This is done through a
stealthy attack signal that is masked within the sensor noise
[17]. It is therefore essential to design a control architecture
that is robust against state measurement errors, and thus
ensures safe functioning irrespective of whether the presence
of an attack is detected (passive safety).

To address this shortcoming of existing CBF, a number
of recent works have developed extensions to account for
potential state measurement errors. Control Barrier Functions
in the presence of measurement noise have been proposed
from a stochastic perspective in [18]. Measurement Robust
CBFs (MR-CBF) were proposed in [19] mainly motivated by
ensuring safety in the presence of uncertainty in measure-
ments in vision-based systems. This MR-CBF formulation
was further augmented with backup sets and successfully
showcased on an autonomous Segway in [20]. However, all
these recently proposed measurement robust CBF are only
applicable in systems with relative degree one. Our work
takes inspiration form existing works [11], [19], [20], and
aims to integrate concepts from measurement robustness with
high-order CBFs to ensure safe control in systems with high
relative degree in the presence of sensor noise.

In particular, we use the concept of Control Barrier
Functions to build safety filters capable of generating control
signals which ensure that the state trajectory is safe despite
state measurement uncertainties. We provide such safety
guarantees using High-Order Measurement Robust Control
Barrier Functions (HO-MR-CBF), and show how to attain
safe controllers for both unconstrained systems and those
with restricted (bounded) controls. Specifically, we make the
following contributions:

• We generalize Measurement Robust Control Barrier
Functions [19], [20] by proposing High-Order Measure-
ment Robust Control Barrier Functions (HO-MR-CBF)
which allow for safe control using CBFs with high-



relative degree in presence of state measurement errors.
• We provide upper bounds on the measurement errors,

for both restricted and unrestricted control inputs, under
which the resulting optimization problem for identifying
safe controllers is feasible.

• We showcase our approach on an obstacle avoidance
problem using a nonlinear kinematic robot model and
sensor noise. We show that both existing measurement
robust CBF and high-order CBF fail in this task, while
our proposed HO-MR-CBF successfully identifies a safe
controller and avoids the obstacle.

Paper organization. Some preliminaries on Control Bar-
rier Functions (CBFs) and relevant variations are presented
in Section II. The HO-MR-CBF is proposed in Section
III, where we first provide the conditions under which the
safe set can be rendered forward invariant in presence of
measurement uncertainty using this function (Section III-A),
followed by the bounds on the error in the state estimation
to guarantee safety of all states in the safe-set using a HO-
MR-CBF (Section III-B). Section IV showcases the proposed
methodology using a simulation of a wheeled robot per-
forming obstacle avoidance in presence of state measurement
noise. Section V provides a conclusion and future directions.

II. PRELIMINARIES

A. Safe Sets and Control Barrier Functions

Consider the continuous time, control affine system given
by:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x ∈ X ⊆ Rn denotes the system state, u ∈ U ⊂ Rm
is the control input, and f : Rn → Rn and g : Rn → Rnxm

are locally Lipshitz functions.
We consider a notion of safety defined using a safe set S

of system states x, formalized as the 0-superlevel set of a
continuously differentiable function h : Rn → R:

S := {x ∈ Rn : h(x) ≥ 0}. (2)

Denote the boundary and interior of S by ∂S := {x ∈ Rn :
h(x) = 0} and Int(S) := {x ∈ Rn : h(x) > 0}, respectively.

System (1) is said to be safe with respect to a set S if S
is forward invariant, as defined below.

Definition 1 (Forward invariance): The set S ⊆ Rn is a
forward invariant set if x(t) ∈ S, ∀t ∈ [0, tmax) when
x(0) ∈ S . Here, [0, tmax) is the interval of existence of
the solution x(t) for the initial condition x(0).

To assure the safety of system (1), we need to identify
safe control inputs under which the set S would be rendered
forward invariant. We do so by stating the conditions on
h(x), the function defining the safe set S, that would allow
us to find such control inputs. Before stating these conditions,
we first introduce class K functions, a mathematical tool used
in comparing nonlinear functions.

Definition 2 (Class K function [21]): A continuous func-
tion α : [0, a] → [0,∞] is said to belong to class K if it is
strictly increasing and α(0) = 0.

With this, the definition of a Control Barrier Function
(CBF) is provided below:

Definition 3 (Control Barrier Function [22], [23]):
Given a set S defined by (2), h(x) is a Control Barrier
Function (CBF) if there exists a class K function α such
that,

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0, ∀x ∈ S. (3)

Here, Lfh(x) denotes the Lie derivative of h along
f 1.Given a CBF h(x) on set S defined as (2), any Lipschitz
continuous controller u ∈ KCBF(x) renders the set S forward
invaraint for system (1) where

KCBF(x) := {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}
(4)

Putting these together, a family of optimal safe controllers
can be obtained by solving the following pointwise Quadratic
Program (QP):

Ksafe(x) = argmin
u∈U

1

2
∥u−Kperf(x)∥2

s.t. Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0

(CBF-QP)

where Kperf(x) is a safety-agnostic or potentially malicious
performance controller. Following (CBF-QP), Ksafe(x) now
acts as a safety filter whose output ensures that the system
trajectory always remains within the designed safety region.

B. Measurement Robust Control Barrier Functions

The above procedure for defining a CBF for a system
assumes perfect state information. In real systems, however,
only measurements z(t) of the true system state x(t) are
obtained (e.g., from a sensor). Formally, assume z(t) =
s(x(t)), were the (stochastic) function s(·) determines the
uncertainty in measurements. Given an observation z, an
estimate of the state is obtained, using an estimation function
q(·), as follows:

x̂ := q(z) = x+ e(x) (5)

where e(x) is some unknown error function. In many cases,
although e(x) is not known, the bounds on the error are
known or can be obtained. This can be characterized by
considering e(x) ∈ E(z) for a measurement dependent,
compact set E(z), and

max
e∈E(z)

∥e∥2 ≤ ϵ(z) (6)

for some locally Lipschitz function ϵ : Rn → R.
To ensure safety in the presence of such measurement un-

certainties, [19], [20] recently proposed measurement robust
control barrier functions, defined below.

1Given a function p(x), Lqp(x) := ∇p(x) · q(x), and is called the Lie
derivative of p along q.



Definition 4 (MR-CBF [19], [20]): For a safe set S de-
fined in (2), the function h : Rn → R is a Measurement
Robust Control Barrier Function (MR-CBF) with parameter
functions (a, b) : Rn → R+, if there exists a class K function
such that for all (z, x̂) ∈ v̂(S):

sup
u∈U

Lfh(x̂)+Lgh(x̂)u−(a(z)+b(z)∥u∥2) > α(h(x̂)) (7)

where v̂(x) : Rn → Rn × Rn = (s(x), q(s(x))) is the
measurement-estimate function, and v̂(S) denotes the image
of the safe set S under this function.

Assume that the functions Lfh : Rn → R, Lgh : Rn →
R, and α ◦ h : Rn → R in (7) are Lipschitz continuous
with Lipschitz constants L̄Lfh, L̄Lgh, and L̄α◦h, respectively.
Then, given such a measurement robust CBF, [19], [20] show
that S is forward invariant under locally Lipschitz controllers
taking values from

KMR-CBF(z, x̂) := {u ∈ U : Lfh(x̂) + Lgh(x̂)u

− (a(z) + b(z)∥u∥2) > α(h(x̂))} (8)

with a(z) = ϵ(z)(L̄Lfh + L̄Lgh) and b(z) = ϵ(z)(L̄α◦h).
A quadratic program to find the optimal, measurement

robust, safe control inputs can then be set up similar to
(CBF-QP), with the constraint determined by (8).

C. High-Order Control Barrier Functions

In some systems, the system dynamics in (1) may be such
that Lgh(x) = 0; for examples, see [11] and Section IV.
This will prevent the use of CBF-based methods presented
above for identifying safe controllers for these systems.
In particular, this would prevent the formulation of the
optimization problem in (CBF-QP) discussed above, as the
terms capturing the impact of control actions u would vanish.
High-order control barrier functions have been proposed [11]
to enable safe control in such systems, as detailed below.

Definition 5 (Relative Degree): The relative degree of a
continuously differentiable function h : Rn → R with
respect to system (1) is the number of times, m, we need to
differentiate h along the dynamics of (1) until the control u
shows up explicitly in h(m).

Assume the function h(x) : Rn → R has a relative degree
m > 1 (this is what is referred to as high-order). Define
a series of functions ψ0,1,...,m := {ψ0, ψ1, . . . , ψm}, with
ψi : Rn → R,∀i, as follows:

ψ0(x) := h(x)

ψ1(x)) := ψ̇0(x) + α1(ψ0(x))

...

ψm(x) := ψ̇m−1(x) + αm(ψm−1(x))

(9)

where α1,2,...,m are class K functions. Further define a series

of sets S1,2,...m := {S1, S2, . . . , Sm} as below:

S1 := {x ∈ Rn : ψ0(x) ≥ 0}
S2 := {x ∈ Rn : ψ1(x) ≥ 0}
...
Sm := {x ∈ Rn : ψm−1(x) ≥ 0}

(10)

In this paper, we assume that the CBF is time-invariant,
which leads to the following definition:

Definition 6 (High-Order Control Barrier Function [11]):
Let ψ0,1,...,m and S1,2,...m be defined as above. A function
h : Rn → R is a high-order control barrier function if there
exits class K functions α1,2,...,m such that

Lmf h(x) + LgL
m−1
f h(x)u+O(h(x)) + αm(ψm−1) ≥ 0

(11)
where O(.) =

∑m−1
i=1 Lif (αi−1 ◦ ψm−i−1).

It is shown in [11] that the set S1 ∩ S2 . . . ∩ Sm can be
rendered forward invariant for system (1) if h(x) is a high-
order control barrier function that is mth order differentiable.

In the remainder of the paper, we extend such high-order
CBFs to be measurement robust.

III. HIGH-ORDER MEASUREMENT ROBUST CONTROL
BARRIER FUNCTIONS

A. Extending MR-CBF to High-Order MR-CBF

In this section, we introduce High-Order Measurement
Robust Control Barrier Functions (HO-MR-CBF). We first
introduce the definition, and then provide the conditions for
the safety of system (1) with respect to a safe-set S defined
by (2), given the existence of a time-invariant HO-MR-CBF
h : Rn → R.

Definition 7: Let ψ0, ψ1, . . . , ψm be defined by (9), and
S1, S2, . . . , Sm be defined by (10). A function h : Rn → R is
a High-Order Measurement Robust Control Barrier Function
(HO-MR-CBF) of relative degree m for system (1) if there
exist continuously differentiable class K functions α1, α2,
. . . , αm, and parameter functions (a1, a2, . . . am, b) : Rn →
R such that for all (z, x̂) ∈ v̂(S):

Lmf h(x̂) + LgL
m−1
f h(x̂)u+O(h(x̂)) + αm(ψm−1)

−(

m∑
i=1

ai(z) + b(z)∥u∥2) > 0 .
(12)

Given a HO-MR-CBF, define the set of all control inputs
that satisfy (12) as:

KHO-MR-CBF = {u ∈ U : Lmf h(x̂) + LgL
m−1
f h(x̂)u+

O(h(x̂)) + αm(ψm−1)− (

m∑
i=1

ai(z) + b(z)∥u∥2) > 0}.

(13)

With this definition, we now prove the safety of system (1)
for the safety set S given the existence of a time-invariant
HO-MR-CBF h(x) : Rn → R under a measurement
uncertainty of the form (6).



Proposition 1: Let the safe set S be defined as (2) by
the continuously differentiable function h : Rn → R.
Assume the functions Lmf h : Rn → R, LgLm−1

f h :

Rn → R, αm ◦ ψm−1, and Lif (αi−1 ◦ ψm−i−1) :
Rn → R,∀i ∈ {1, 2, . . . ,m − 1}, are continuously
differentiable with Lipschitz constants L̄Lm

f h
, L̄LgL

m−1
f h,

L̄αm◦ψm−1
, and L̄Li

f (αi−1◦ψm−i−1),∀i ∈ {1, 2, . . . ,m −
1}, respectively. Additionally, assume that the measure-
ment error function ϵ(z) is of the form (6). If h
is a HO-MR-CBF for system (1) on S with param-
eter functions (ϵ(z)(L̄Lm

f h
+

∑m−1
i=1 L̄Li

f (αi◦ψm−i−1) +

L̄αm◦ψm−1), ϵ(z)(L̄LgL
m−1
f h)), then any locally Lipschitz

continuous controller ksafe : Rn × Rn → Rm, such that
ksafe(z, x̂) ∈ KHO-MR-CBF(z, x̂),∀(z, x̂) ∈ v̂(S), renders (1)
safe with respect to S.

Proof: Our proof is similar to that of [19]. First define
c : Rn × Rm → R as:

c(x,u) = Lmf h(x)+LgL
m−1
f h(x)u+O(h(x))+αm(ψm−1)

Now, we need to show that for any x ∈ S and (z, x̂) ∈ v̂(S),
c(x,u) ≥ 0. A sufficient condition for this to hold is

inf
x∈X (z)

c(x,u) ≥ 0,

where X (z) := {x ∈ Rn : ∃ e ∈ E(z) s.t. x̂ = x + e(x)}
is the set of all possible actual states given the known
measurement-estimate pair (z, x̂). Now, from (5):

inf
x∈X (z)

c(x,u) = inf
e∈E(z)

c(x̂− e,u)

= c(x̂,u) + inf
e∈E(z)

c(x̂− e,u)− c(x̂,u)

= c(x̂,u)− sup
e∈E(z)

|c(x̂− e,u)− c(x̂,u)|.

Now, consider |c(x′,u) − c(x,u)| = |Lmf h(x′) +

LgL
m−1
f h(x′)u + O(h(x′)) + αm(ψm−1) − Lmf h(x) +

LgL
m−1
f h(x)u + O(h(x)) + αm(ψm−1)|. Using the stated

Lipschitz assumptions, the error bound defined by (6), and
the triangle inequality, we get:

|c(x′,u)− c(x,u)| ≤ (L̄Lm
f h

+

m−1∑
i=1

L̄Li
f (αi−1◦ψm−i−1)+

L̄αm◦ψm−1) + L̄LgL
m−1
f h∥u∥2)ϵ(z).

Hence,

inf
x∈X (z)

c(x,u) ≥ c(x̂,u)− (L̄Lm
f h

+

m−1∑
i=1

L̄Li
f (αi−1◦ψm−i−1)

+ L̄αm◦ψm−1
) + L̄LgL

m−1
f h∥u∥2)ϵ(z).

By Definition 7, and choosing u from (13), we get
infx∈X (z) c(x,u) ≥ 0.

We next draw some comparisons between the existing
measurement robust MR-CBF, and our proposed high-order
variant HO-MR-CBF. First note that we can recover the
existing definition of MR-CBF in [19] by setting m = 1 in

our characterization of HO-MR-CBF; this is similar to the
relation between CBF [2] and HO-CBF [11]. In addition,
by comparing the definitions of (7) for the MR-CBF with
(12) for HO-MR-CBF, we observe that the last (negative)
term, which appears in the choice of our controller due to
the state measurement errors, involves considerably more
terms, related to the m class K functions ai of the HO-MR-
CBF. Intuitively, this larger negative term indicates a larger
sensitivity of the choice of safe controllers to measurement
errors, requiring the choice of the controller to be more
conservative (i.e, have smaller ∥u∥2) compared to the case
without measurement errors.

Under the assumption that the obtained controllers are
Lipschitz continuous, the control input can be generated by
solving the following optimization problem:

Ksafe(x̂) = argmin
u∈U

1

2
∥u−Kperf(x̂)∥2

s.t. Lmf h(x̂) + LgL
m−1
f h(x̂)u+O(h(x̂)) + αm(ψm−1)

− (L̄Lm
f h

+

m−1∑
i=1

L̄Li
f (αi−1◦ψm−i−1) + L̄αm◦ψm−1

)+

L̄LgL
m−1
f h∥u∥2)ϵ(z) ≥ 0

(HO-MR-CBF-OP)
In the remainder of this section, we identify conditions on

estimation errors under which the above problem is feasible.
We further extend the problem above by introducing an
additional constraint: bounded control inputs.

B. Introducing constrained control inputs
In the previous section, we provided the conditions under

which a locally Lipschitz controller ksafe(z, x̂) : Rn×Rn →
R makes the system safe with respect to a safe set S defined
as (2). Specifically, we show that if ksafe ∈ KHO-MR-CBF, then
the system (1) is safe with respect to set S, and control inputs
to ensure this can be obtained by solving the optimization
problem (HO-MR-CBF-OP).

Nonetheless, in many systems, the control inputs are
restricted (e.g., by physical limitations), and this may further
conflict with the constraint (12) imposed to ensure safety in
(HO-MR-CBF-OP). Motivated by this, in this section, we
further impose a constraint of the form umin ≤ u ≤ umax
on the controller choice. We provide conditions on the
error function e(z) under which such extended (HO-MR-
CBF-OP) will be feasible under both safety and bounded
controller constraints, and can therefore be solved to find
safe controllers within the restricted control set.

To proceed, we begin by noting that typically, the sensor
model s(x) can be known to the designer, along with the
estimation error bounds E(z); e.g., this is the case when
using a Kalamn Filter with a X 2 anomaly detector. Further,
while the safe-set S is defined on the actual state x, the
controller only has access to the measurement-estimate pair
(z, x̂). Hence, similar to [19], to prove the feasibility of (HO-
MR-CBF-OP) for all x ∈ S, we use the following definition:

X̂ (x) := {x̂ ∈ X̂ ⊂ Rn : ∃ e ∈ E(s(x)) s.t. x̂ = x+ e}.
(14)



This is the set of all possible state estimates given a particular
sensor model s(x) : Rn → R and actual state x ∈ X. Also
similar to [19], we extend the definition of ϵ(z) to ϵ(z) =
ϵ(s(x)) =: ϵ(x). Additionally, we define the following terms:

Ūmax := sup
x̂∈X̂

∥umax∥2
(
∥LgLm−1

f h(x̂)∥2 − b(z)
)

Ūmin := sup
x̂∈X̂

∥umin∥2
(
∥LgLm−1

f h(x̂)∥2 − b(z)
)

F̄max := sup
x̂∈X̂

−Lmf h(x̂)− αm(ψm−1(x̂))−O(h(x̂))

(15)

Given these definitions, we are ready to state our main
result on a measurement errors upperbound under which the
extended (12) will be a feasible optimization problem.

Proposition 2: Assume

ϵ(x) < max
{

∥umax∥2∥LgL
m−1
f h(x)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2(L̄sum+∥umax∥2L̄
LgL

m−1
f

h
)

,

∥umin∥2∥LgL
m−1
f h(x)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2(L̄sum+∥umin∥2L̄
LgL

m−1
f

h
)

}

where L̄sum = L̄Lm
f h

+
∑m−1
i=1 L̄Li

f (αi−1◦ψm−i−1) +

L̄αm◦ψm−1 , and the remaining terms follow the definitions
in Proposition 1. Then, (12) with the added control input
bounds of the form umin ≤ u ≤ umax is feasible ∀x ∈ S.

Proof: We begin by restating that if h is a HO-MR-
CBF:

sup
u∈U

LgL
m−1
f h(x̂)u− b(z)∥u∥2 >

− Lmf h(x̂)−O(h(x̂))− αm(ψm−1) +

m∑
i=1

ai(z) (16)

Similar to [19], we use the change of variables r = ∥u∥2
and j = u/∥u∥2,

sup
u∈U

LgL
m−1
f h(x̂)u− b(z)∥u∥2

= sup
∥umin∥2≤r≤∥umax∥2

r
(

max
∥j∥2=1

LgL
m−1
f j − b(z)

)
= sup

∥umin∥2≤r≤∥umax∥2

r
(
∥LgLm−1

f h(x̂)∥2 − b(z)
)

We observe that (16) is feasible if

sup
x̂∈X̂ ,u∈U

∥u∥2
(
∥LgLm−1

f h(x̂)∥2− b(z)
)
> F̄max +

m∑
i=1

ai(z)

We first consider F̄max:

F̄max = sup
x̂∈X̂

−Lmf h(x̂)− αm(ψm−1(x̂))−O(h(x̂))

= −[ inf
x̂∈X̂

Lmf h(x̂) + αm(ψm−1(x̂)) +O(h(x̂))]

= −[ inf
ê∈E(s(x))

Lmf h(x+ e) + αm(ψm−1(x+ e))+

O(h(x+ e))]

= −[Lmf h(x) + inf
ê∈E(s(x))

Lmf h(x+ e)− Lmf h(x)+

αm(ψm−1(x)) + inf
ê∈E(s(x))

αm(ψm−1(x+ e))−

αm(ψm−1(x)) +O(h(x))+

inf
ê∈E(s(x))

O(h(x+ e))−O(h(x))]

≤ −[Lmf h(x)− sup
ê∈E(s(x))

|Lmf h(x+ e)− Lmf h(x)|+

αm(ψm−1(x))− sup
ê∈E(s(x))

|αm(ψm−1(x+ e))−

αm(ψm−1(x))|+O(h(x))−
sup

ê∈E(s(x))
|O(h(x+ e))−O(h(x))|]

≤ −[Lmf h(x) + αm(ψm−1(x)) +O(h(x))− L̄sumϵ(x)]

Replacing the upper bound of F̄max, (12) is valid if:

sup
x̂∈X̂ ,u∈U

∥u∥2
(
∥LgLm−1

f h(x̂)∥2 − b(z)
)
>

−Lmf h(x)− αm(ψm−1(x))−O(h(x)) + 2L̄sumϵ(x)

When ∥LgLm−1
f h(x̂)∥2 − b(z) > 0, (16) is feasible if

Ūmax > F̄max. Whereas when ∥LgLm−1
f h(x̂)∥2 − b(z) ≤ 0,

(16) is feasible if Ūmin > F̄max. Replacing (ai(z), b(z))
with their definitions from Proposition 1 and combining both
inequalities, we get:

ϵ(z) = ϵ(x) < max
{

∥umax∥2∥LgL
m−1
f h(x̂)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2L̄sum+∥umax∥2L̄
LgL

m−1
f

h

,

∥umin∥2∥LgL
m−1
f h(x̂)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2L̄sum+∥umin∥2L̄
LgL

m−1
f

h

}
Finally, similar to [19] we observe that:

∥LgLm−1
f h(x)∥2 = ∥LgLm−1

f h(x̂− e(x))∥2
∥LgLm−1

f h(x)∥2 ≤ ∥LgLm−1
f h(x̂)∥2 + L̄LgL

m−1
f

ϵ(x)

giving:

ϵ(x) < max
{

∥umax∥2∥LgL
m−1
f h(x)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2(L̄sum+∥umax∥2L̄
LgL

m−1
f

h
)

,

∥umin∥2∥LgL
m−1
f h(x)∥2+L

m
f h(x)+αm(ψm−1(x))+O(h(x))

2(L̄sum+∥umin∥2L̄
LgL

m−1
f

h
)

}

In the limit when ∥umax∥2 → ∞ and ∥umin∥2 → 0 (i.e., when
there are no constraints on the control inputs), the bound in



Proposition 2 reduces to:

ϵ(x) < max
{∥LgL

m−1
f h(x)∥2

2L̄
LgL

m−1
f

h

,
Lm

f h(x)+αm(ψm−1(x))+O(h(x))

2L̄sum

}
As such, this proposition further extends the bounds obtained
in [19] for the feasibility of the (unconstrained) MR-CBF
controller choice, with the only difference being that the
terms are now in their high-order variation for the feasibility
of our (unconstrained) HO-MR-CBF.

IV. NUMERICAL EXAMPLE

In the previous section, we extended the MR-CBFs to
high-order MR-CBF, further introducing bounded controller
constraints, and identified bounds on the measurement error
under which the resulting optimization problem for identify-
ing safe controllers is feasible. In this section we showcase
the approach on a problem where a robot is required to
avoid an obstacle in presence of a constant bias in its
measurements. The model of the robot is given by:

x
y
v
θ

 =


v cos θ
v sin θ

0
0

+


0 0
0 0
1 0
0 1

 [
u1 u2

]
(17)

where the states x = [x, y, v, θ] denote the x position
coordinate, y position coordinate, velocity and heading angle,
respectively, and the control inputs u1 and u2 indicate the
steering rate and acceleration respectively. The control limits
are set to 1 rad/s and 5 m/s2, respectively. We assume a
safety requirement where the robot needs to keep a certain
distance D to the obstacle, given by:

h(x) = (x− x0)
2 + (y − yo)

2 −D2 ≥ 0 (18)

where (xo, yo) are the coordinates of the obstacle. Addition-
ally, we assume there is a constant 1m bias in the position
estimates, giving us an upper bound on the error ϵ(z) =
1, where z denote the position sensor measurements. We
observe that h(x) is indeed high-order with degree m = 2.
An MPC controller without the knowledge of the safety
requirement is used as the performance controller. The gener-
ated control signal is then passed through a high-order CBF
based safety filter which outputs the final control signal input
to system (17). The required Lipschitz constants are derived
manually. We use the penalty method as introduced in [11]
along with linear class K functions to ensure feasibility of
the ensuing optimization. We use the same penalty value p
for the two class K functions.

We first run this architecture with the safety filter built
with the QP using the regular HOCBF constraint (11). We
use a penalty p = 1.5. The resulting trajectory is illustrated
in fig. 1. The boxes around the estimated state indicate the
potential set in which the estimated state can lie. Since the
HOCBF has access to only the estimated state, it can be
seen that the estimated trajectory is safe whereas the true
trajectory collides with the obstacle.

Next, we run the same simulation with the safety filter
using the proposed measurement robust variation of the

Fig. 1: Simulation using regular high-order CBF under
measurement uncertainty. The true trajectory collides with
the obstacle (black curve) while the estimate does not.

Fig. 2: Simulation using the proposed high-order measure-
ment robust CBF under measurement uncertainty. The true
trajectory does not collide with the obstacle.

HOCBF as seen in (HO-MR-CBF-OP) using the same
penalty as above. The resulting trajectory is shown in fig.
2. It is observed that neither the true state, nor the potential
error set collides with the obstacle. The resulting trajectory
depends on the choice of penalties and the type of class K
functions (for example, linear v/s quadratic). The resulting
trajectories for a few different penalty values are shown in
fig. 3.

A. Maximum error bound analysis

Next, we look at the upper bounds on the error ϵ(x)
at different states for which (HO-MR-CBF-OP) is feasible.
Figure 4a shows the upper bounds at v = 10 m/s and θ =
0 deg, which indicates a situation where the robot is moving
to the right at 10 m/s. The obstacle is the empty space
centered at (10, 12). It can be observed that the positions



Fig. 3: Simulation using the proposed high-order measure-
ment robust CBF under measurement uncertainty with dif-
ferent penalty values. The conservativness increases with
increasing penalty. The error set is also shown as boxes,
for reference.

to the left of the obstacle have a very low upper bound. This
is because since the robot is moving to the right (towards the
obstacle), the error bounds must be lower to ensure a safe
control action is found, while farther away, a safe action can
be found for higher error bounds as well. Figure 4b shows
the same for v = 10m/s and θ = 180 deg. Now, since the
robot is moving left, the positions to the right of the obstacle
have a lower upper bound.

Next, we look at the effect of increased control limits,
shown in fig. 5. While intuitively a higher control action
should allow for more flexibility in motion, we notice
that the upper bound of the error reduces. This could be
due to the sensitivity of ϵ(z) to ∥u∥2 as can be seen in
(HO-MR-CBF-OP).

V. CONCLUSION

We studied the problem of safe control in the pres-
ence of state measurement errors and bounded controller
constraints using High-Order Measurement Robust Control
Barrier Functions (HO-MR-CBF). We first extended the
formulation of the measurement robust control barrier func-
tion to their high-order variation to handle systems with
high-relative degree. We then provided conditions on the
bound of the error in the state estimates for which a HO-
MR-CBF optimization problem is feasible. We applied the
proposed HO-MR-CBF on a collision avoidance problem
using a nonlinear kinematic model of a wheeled robot in the
presence of state measurement bias. While the HOCBF fails
to satisfy the safety requirement, we see that the proposed
HO-MR-CBF does. Additionally, by varying the penalties
for the class K functions used, we obtain multiple safe
trajectories with varying degrees of conservativeness. Future
work include extension of the proposed approach to discrete
domains, and augmenting with classical state estimators

(a) at 10 m/s velocity and 0 deg heading

(b) at 10 m/s velocity and 180 deg heading

Fig. 4: Upper bound on error for feasible (HO-MR-CBF-OP)
at different states

such as Kalman Filters to provide stronger performance and
safety guarantees. From an application viewpoint, we seek to
further explore the applicability of this approach to provide
safety guarantees for cyber-physical systems under stealthy
attacks.
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